AFCRL-66-182

7133.3-T
Copy

‘THE UNIVERSITY OF MICHIGAN

COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL ENGINEERING

Radiation Labor: ory

Studies in Radar Cross Sections L -

Diffraction and Scattering by Regular Bodies IV:

The Circular Cylinder

Contract With:

T RN !\U'C.»tmw“\
O. EINARSSON FOR F ' ooat = i1t AND
TEC R }"I‘; \lAi i N
R. E. KLEINMAN | __ _ - —
Hardcop " Microfishe,
P. LAURIN 700, | /S‘Dl3f‘9\2¢“
P.L.E. USLENGHI Y A !

| B GoRY

February, 1966

Scientific Report No. 3 P
Contract No. AF 19(628)-43?.8 JUL1S 1058

Project 5635 ‘
Task 563502 U i

Air Force Cambridge Research Laboratories
Office of Aerospace Research

United States Air Force

Bedford, Massachusetts

Administered through:
OFFICE OF RESEARCH ADMINISTRATION - ANN ARBORK

|




THE UNIVERSITY OF MICHIGAN
7133-3-T
AFCRL-66-182

STUDIES IN RADAR CROSS SECTIONS L -
DIFFRACTION AND SCATTERING BY REGULAR BODIES IV:
THE CIRCULAR CYLINDER

by

0. Einarsson
R.E. Kleinman
P. Laurin
P.L.E. Uslenghi

Scientific Report No. 3

Contract AF 19(628)-4328
Project 5635
Task 563502

February 1966

Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS




(TR TR,

THE UNIVERSITY OF MICHIGAN

7133-3-T

ABSTRACT

A survey of electromagnetic and acoustical scattering by a circular cylinder
is performed. Theoretical methods and results for infinite and semi-infinite cylin-
ders, and experimental ones for finite cylinders, are included. Only time-harmonic
fields are considered, and dielectric cylinders are not taken into account.
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I
INTRODUCTION

1,1 Preliminary Remarks
This is the fourth in a series cf reports on electromagnetic and acoustical

scatértng by selected bodies of simple shape. The previous reports dealt with the
sphere (Goodrich et al, 1961), the cone (Kleinman and Senior, 1963) and the prolate
spheroid (Sleator, 1964). The choice of the circular cylinder was dictated by vari-
ous considerations. Firstly, the large number of theoretical and experimental re-
sults which have been published on this shape during the last one hundred years is in
itself sufficient to justify the writing of the present report. Secondly, the circular
cylinder has often been used for the development and testing of approximation meth-
ods of general applicability, in both the low and high frequency limits. Finally, it is
a shape of considerable interest in practical applications such as scattering by the
central part of a missile and radiation and scattering by cylindrical antennas.
In this report, the emphasis is placed on scattering rather than on radiation
problems, i.e. the source is usually located off the surface of the cylinder. Radi-
ating slots and gaps in the cylinder surface are not considered, and the interested
reader should consult the various excellent monographs on this subject, such as the
books by King (1956) and by Wait (1959). Although the case of an electric dipole on
he surface of the cylinder is examined, the probiem of the equivalence of dipoles
and slots is not discussed.

Only the case of time harmonic fields is considered explicitly. This choice
is justified by the fact that an arbitrary field can always be decomposed into the sum

f monochromatic waves by Fourier analysis, and that most of the literature does in-

eed consider time harmonic fields only. However, there exist a few works on dif-
ction of pulses by circular cylinders, for example Friedlander's (1954) and Bara-
t's (1965) in which a Laplace transform method is adopted. The propagation of
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acoustic pulses from a circular cylinder has been investigated by Barsakat (1961),
Useful information is also contained in a book by Friedlander (1958).

Chapters II, III and IV are devoted to exact solutions, low and high frequency
approximations for a cylinder of infinite length, Special emphasis has been given
the equivalence between acoustical and electromagnetic boundary value problems.
Wherever possible, the case of an impedance boundary condition has been consid
dered, and the results for soft, hard and perfectly conducting cylinders have been
derived as limiting cases. In Chapter V, the scattering by a semi-infinite circular
cylinder is investigated. Chapter VI is devoted to a brief survey of measurement
techniques and experimental results. It seemed reasonable to include such measure-
ments on (necessarily) finite cylinders, even though a theoretical chapter on finite
cylinders does not appear in this report. The principal reason for the exclusion of
such a chapter is that a satisfactory theory for a cylinder of finite length does not
yet exist; most works on this subject deai with the two limiting cases of a thin long
cylinder (a wire) and of a short fat cylindur (a disc), and a comprehensive treatment
of either one of these two cases would require a separate book. A brief outline of
the main existing works on scattering by a finite cylinder is given in section 1.3,

A considerable effort has been made to take into account all relevant contri-
butions to the subject of this report and to give due credit to bibliographical sources.
However, a complete bibliographical listing has not been attempted. The authors
are indebted to their colleagues of the Radiation Laboratory for criticism and com-
ment. This report has been typewritten by Miss C. Rader, and the figures have
been drawn by Mr, A, Ahtones.

1.2 Brief Historical Survey
Some of the following historical remarks are taken from a recent paper by

Logan (1965). They illustrate the principal studies on scattering by circular cylin-
ders until the beginning of World War II. The numerous contributions which have




THE UNIVERSITY OF MICHIGAN
7133-3-T

appeared in the technicul literature during the last twanty-tive years are adequately
described in the following chapters of this report, and therefore will not be men-
tioned in thia section.

The first important study on the scattering of waves by a circular cylinder is
contained in section 343 of Rayleigh's Theory of Sound (Strutt, 1945), which was
completed in the Spring of 1877, In that section, Rayleigh showed how to separate

the wave equation in circular cylindrical coordinates, and carried out the analysis
explicitiy for the case of a plane sound wave normally incident on a cylinder of gas
of given density and compressibility and with radius small compared to the wave-
length. Four years later, Rayleigh published a paper (Strutt, 1881) in which, on the
baais of Maxwell's theory of electromagnetism, he solved exactly the problem of the
scattering of electromagnetic waves by a dielectric cylinder; he reconsidered this
problem almost thirty years later (Strutt, 1918). Rayleigh's solution is valid for
normal incidence (the case of oblique incidence has been investigated only recently
by Wait (1955)), and it is known that for th!s case the acoustical and electromagnetic
problems are essentially equivalent, as Rayleigh showed in 1897. A few years
earlier, the first study of the scattering of plane waves by a perfectly conducting
infinite circular cylinder had been published by J.J. Thomson in his Recent Re-
searches in Electricity and Magnetigm (1893).

In 1905 and 1906, Seitz published two papers on diffraction by a metal cylin-
der, which contain various numerical results. In those same years, Debye (1908)
succeeded in proving that the exact solution for the circular cylinder leads to results]
consistent with the predictions of geometrical optics. Also, Nicholson (1912) pub-
lished an interesting work on the pressure exerted on a perfectly conducting cylinder
by an incident electromagnetic wave, and Bromwich (1919) discussed the separability]
of Maxwell's equations in orthogonal curvilinear coordinates, of which the circular
cylindrical coordinates are a special case. Bromwich's paper is especially inter-
esting because he does not restrict himself to harmonic time deperdence.

3
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It was not until the advent of the radar that a new series of studies on scatter-
ing by cylinders began. In 1941, the well-known book by Stratton appeared, and in
that same year a theoretical report by Moullin and Reynolds was distributed, in
which the case of plane waves normally incident on infinite circular cylinders was
considered, and the numerical data obtained from the exact solution were displayed
in a number of graphs.

1.3 Scattering from Finite Cylinders

The purpose of this section is to provide the reader with some bibllographicei
references on scattering and radiation by finite cylinders. Although these two prok-
lems are closely related, the latter has received 1nuch more attention in the litera-
ture owing to its importance in antenna applications. Hallen (1938) was the tirst to
obtain an approximate solution for a thin cylindrical antenna, i.e. for values of the
cylinder radius much smaller than the wavelength. He derived an integral equation
for the unknown current distribution on the surface of the cylinder, and solved it
approximately by an iteration technique.

Since Hallén's attempt, seversal authors have introduced modifications in the
integral equation: Van Vleck, Bloch and Hammermesh (1947), King and Middleton
(1946), Gray (1944), Duncan and Hinchey (1960), Kapitsa, Fock and Wainshtein
(1960), among others. Van Vleck, Bloch and Hammermesh (1947) presented two in-
dependent methods for deriving approximations to radar back scattering from thin
cylinders. In solving for the current induced on the thin cylinder, they assumed
that this current consists of four trigonometric functions, two of which correspond
to forced terms, that is, to the voltage impressed by the incident wave, whereas the
remaining two were attributed to resonant parts, i.e. to the current present on the
cylinder at the resonant frequencies. In the first of their two methods, the end-con-
dition is imposed for choosing two of the parameters in the expression for the cur-
rent, viz,, the current vanishes at the ends of the cylinder. The other two para-
meters are determined by imposing the conservation of energy. In the second

4
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method, two of the parameters are found by equating the terms in Hallén's equations
corresponding to the voltage impressed by the incident wave and the other two are
determined using the end-condition with an iterative procedure. The reader is re-
ferred to the original paper for details and for a discussion of the advantages of both
methods,

Storer (1951) and Tai (1951) have independently applied variational methods
for calculating the scattering cross section. Tai expressed the back scattering
cross section as a funotion of the unknown current on the cylindc~. This funciion is
transformed with the help of Hallén's integral equation into one which is stationary
in the unknown current function. By substituting various trial functions for the cur-
rent into the stationary functional and then determining the free parameters by the
Rayleigh-Ritz method, the back scattering cross section is esiimated. The trial
function used by Tai is a linear combination of the currents on the cylinder at the
first and second resonant frequencies, and it had been previously adopted by Van
Vleck et al (1947).

Williams (1956) has used an extension of the Wiener-Hopf technique for cal-
culating the scattering of a plane sound wave by a finite cylinder. Williams' method
is parallel to the method of Jones (1952); it involves the Laplace transformation of
the differential equation before applying the boundary conditions and the reduction of
the problem to the solution of two complex integral equations. Although these equa-
tions cannot be solved exactly, an approximate sclution has been obtained under the
assumption kt >>1 (I = length of the cylinder). Williams has also obtained explicit
expressions for the end-condition by taking into consideration the resonance of the
system,

Wilcox (1955) has conducted a detailed study of scattering of electromagnetic
radiation by finite cylindrical shells. He has used the irtegral equation method and
has obtained approximations to the scattering cross sections in terms of the tan-
gential electric field on the axial extension of the cylinder surface in a form which

5
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is stationary with respect to variations about the correct values. The tangential
component of the electric field due to scattering by a semi-infinite cylinder is used
as a trial function in the stationary expression. Wilcox has also derived variational
expressions for the far field in the thin cylinder approximation,

A high frequency asymptotic solution of scattering by a solid conducting finite
cylinder is given by Kieburtz (1962). However, his results are incorrect except for
the first order term, because they are based on an erroneous assumption concerning
the locations of the singularities of the Fourier transforms of the field oomponents*.
Numerical methods are available for calculating the current distribution fro
integral equations. Govorun {(1962) has obtained numerical results for the symmetric
pert of the surface current on a solid cylinder excited by a plane wave at broadside
incidence. The length to radius ratio varies from 6 to 65536 and the length from
A/8 to TA/4. The paper also contains results for a cylindrical antenna with a cir-
cumferential gap of finite width. His solution converges quite rapidly for thin cylin-
ders. Williams (1956) has included a few numerical results in his previously-men-
tioned paper.

Much of the work done in the area of finite cylinders has been devoted to thin
cylinders in consideration of the practical applic: tions to antennas. King (1956) has
written a book which gives an extensive treatment of this subject.

*
Kieburtz reports in a private communication that the method for construction of an
asymptotic series expansion used in his recent paper (Kieburtz, 1965) can be applied

to the cylinder problem,
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EXACT SOLUTIONS FORHAN INFINITE CYLINDER
In this chapter, the boundary value problems of scattering of electromagnetic
energy by an infinitely long circular cylinder are formulated and solved exactly.
The relationship between vector and scalar problems is examined, and various types
of sources are considered: plane waves, cylindrical waves, dipoles, and evanescent
waves.
It is assumed that the cylinder is made of a perfectly conducting material.
In some instances, however, the more general case is considered in which an impe-
dance boundary condition may be applied at the surface of the cylinder.
The rationalized MKS system of units is employed throughout.*
2.1 Precise Formulation
This section deals with the problem of finding the electromagnetic field ex-
ternal to an infinitely long (perfectly conducting) circular cylinder embedded in a
uniform, homogeneous and isotropic medium of electric permittivity €, magnetic
permeability 4 and zero conductivity, which medium may be taken as free space.

The homogeneous Maxwell's equations

v °=

AH =€ ==, (2.1)
oH

VAE = - = (2.2)

govern the behavior of the electric field E and of the magnetic field H at all ordi-
nary points in space, but do not describe the fields at the source points, By taking

* The following vector notation is used: vectors of arbitrary magnitude will be un-
derlined, e.g. E; unit vectors will be denoted by carets, e.g. B; scalar products
indicated by dots, e.g. 3 -E; and vector products by wedges, e.g. VAE.
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the divergence of both sides of equations (2.1) and (2.2), and with the convention that
at some time the fields may become solenoidal, which is certainly the case if, for

H = 0, one finds the auxiliary equations

example, -E-t=-w= H._»

V-H=V-E =0, (2.3)

Equations (2.1), (2.2) and (2.3) are satisfied by the incident or primary fields E!
and Lli, by the total (incident plus scattered) or diffracted field E and H, and
therefore also by the secondary or scattered fields E_ and g’, which represent the
disturbance introduced in the primary fields by the infinite cylinder.

The presence of the cylinder is accounted for by requiring that on its surface
the total electric and magnetic fields satisfy the impedance boundary condition:

E-(E-f)p = ZppH, , (2.4)

where Z is the surface impedance and 5 a unit vector perpendicular to the surface
of the cylinder and directed from the surface into the surrounding medium. The
case of perfect conductivity corresponds to Z = 0,

If the sources of the primary fields are specified, the surface impedance Z
is given, and a radiation condition (which is necessary to ensure uniqueness) is
assumed, then the boundary value problem is well set and may be formulated direct-
ly in terms of either the electric or the magnetic field. However, it is often advan-
tageous to reformulate the problem in terms of auxiliary functions from which the
field quantities may be derived through simple operations of differentiation.

Such auxiliary functions, or potentials, may be chosen in a variety of ways
(see, for example, Stratton, 1941). Following the procedure adopted by Kleinman
and Senior (1963), we define E and H in terms of a vector potential A through the

relations:

E = VAVAA , (2.5)
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H=¢ <= VAA . (2.6)

Maxwell's equations are satisfied by (2.5) and (2.6), provided that
2

oA
VAVAVAA + EMV/\—? =0, 2.7
ot
that is,
a2
(V/\V/\+ cu ——2->é_ = Vf, (2.8)
ot

where f is an arbitrary scalar function of position and time, Formula (2.8) may be

rewritten as
2
(\72- eu 8—2)_4 = vt (2.9)
ot

where Vz operates on the Cartesian orthogonal components of A. Any electromag-
netic field can be derived from such a vector potential; in particular, there exists
a potential which gives the field exterior to a conducting cylinder.

Instead of obtaining the fields E and H from (2.5) and (2.6), we may use the

relations:

E

“H a% VAA , (2.10)

H = VAVAA , (2.11)

where A is still a solution of (2,9). It is then possible to express any electromag-
netic field in the form:
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)
E = VAVAA - 1 5 VAA, ,

(2.12)

H = VAVAA + € & TAA, ,

with A, and A, solutions of (2.9). Expressions (2.12) are obviously redundant, in
the sense that a great freedom of choice is left for _41 and Az. Such freedom can
be used to construct the vector potentials from scalar potentials. Let us set

A =y e, (2.13)

2 2

where ¢ is a constant vector. It was proved by Whittaker (see, for example,
Nisbet, 1955) that any electromagnetic field can be derived from (2. 12) with the vec-
tor potentials restricted to the form (2.13), provided that the scalar functions wl
and wz are two independent solutions of the wave equation

2
Gz-eu -8—.5>¢ =o0. (2.19)
at

The potentials Al and Az 80 determined are usually called electric and inagnetic
Hertz vactors, and denoted by He and ]'_‘];n respectively.

The electric Hertz vector T, originates a field which is characterized by thej
absence of a component of H in the direction of ¢ (transverse magnetic (TM) field),
whereas the magnetic Hertz vector '[[m originates a field for which E -¢c = 0 (trans-
verse electric (TE) field).

Except when otherwise stated, in the following we shall consider the particu-
lar case of monochromatic radiation. The propagation constant k in the medium
surrounding the cylinder is then given by

2
K=w eu=-r" , (2.15)

10
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where w is the angular frequency and A the wavelength. In the preceding relations,
the operator 9/0t is replaced by the multiplicative factor -iw. The time dependence
factor o ¥ ig suppressed throughout,

If rectangular Cartesian coordinates (x,y, z) and cylindrical polar coordi-
nates (p, §,z) connected by the relations x = p cos f, y=psinp, z = z are intro-
duced (Fig. 2-1) 8o that ¢ = i‘z is parallel to the axis z of the cylinder, then the
field components defined by (2.12) are, in cylindrical coordinates:

2
aw & L) &
E L, by 72 H = —2_ e 71
p = Bpoz T p E) o 90z~ p Of
a"’1 awz 1°2¢2 g
o o T Ty = ot - 219
2
E =3ﬂ+k¢ H =aw2 +k2¢
2 2 2z 2 2°
oz oz

Observe that if wl = 0 then Ez = 0 (TE case), while if wz 2 0 then Hz =0 (TM
case).
The boundary conditions (2.4) at the surface p = a of the cylinder now be-

come:.

Ez=ZH¢, Epa-ZHz, at p=a,

or also, by (2.16):
2 2

ay. 9% %y
1 1,2 _z%%
ey YT YRV < Y e
0z
2 2
7/ Y Ay
_M——z —-—2 2 = - 1 =
Z ap+azz“‘¢2 azT stp=a.

11
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FIG. 2-1: GEOMETRY OF THE CIRCULAR CYLINDER
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In order to satisfy these relations, in the case of perfect conductivity (Z = Q) it is
sufficient to require that either

0 e
VjE and v zol
1 Bpp'a
or
wzio.and ¥y =0 ,

p=a

whereas in the case in which Z # 0 both TE and TM fields must, in general, be
present, However, if wl and wz are independent of z (two-dimensional problems,
3/az = 0), then the boundary conditions can be satisfied by requiring that either

» 9 =
v, 20, and -55+1kz \F/u Yy =0,
p=a
= i 2 .
w2 0, and (-kz “ap w1p=a 0.

The scalar wave functions wl and ',112 can be represented by linear combina-
tions of the elementary wave functions

J +
w .= B G\]kz-ﬁ)e‘“"“‘z. 2.17)
n,h H(l)
n

where n is a real integer (n = 0, ¥1, ¥2, etc), and h a parameter which is, in
general, complex and whose values may cover a discrete set as well as a coatinuum
spectrum. If h assumes only one value, as it happens, for example, when the
rimary source consists of a plane wave, then wl and v//2 are proportional to Ez
d Hz’ respectively.

13
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In the case in which all primary sources are located within a finite distance
from the origin r = 0 of the coordinate system, the fields E and H are required to
satisfy the Silver-Miiller radiation condition

lim

A
r—>® 0 uniformly in T , (2,18)

- E
{zAA) + tir) i
where r = rt= xfx+ y?y+ z'fz. and the angle 6 of Fig. 2-1 is restricted to the
range 0<5§ 9 r-5, with 6 arbitrarily amall and conrtant. From this condition
and from Maxwell's equations it follows that the fields are of the form

£(T) 9—;;— , a8 r-»w .

If the primary source is a line source parallel to the cylinder axis, then the
problem is two-dimensional and condition (2.18) is no longer valid. In such cases
it is sufficient to require that

um 1/2( 8 - .
p_N:np (ap ik)l[/l 0 uniformly in ¢ , {2.19)
2
that is, wl and wz are of the form
olke
§{{ ) r as p—m .

Finally, in the case of plane wave incidence it is necessary to separate inci-
dent from socattered fields; the £calar wave functions w: and w; which originate the
scattered fields satisfy the two-dimensional radiation condition (2,19),

Two kinds of primary fields are of practical interest, and will be examined
in detail in the following two sections of this report: plane waves, and sources
located at a finite distance from the scatterer. The first kind is important in radar

14
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soattering where the target is usually assumed to be illuminated by an incident plane
wave. The second type is relevant to the case of an antenna mounted on the scat-
terer. The antenna may be taken to be a dipole, since more complicated sources
can be considered as distributions of dipoles. On the other end, a plane wave is the
limiting case of a dipole going to infinity in a direction perpendicular to its moment.
From the strictly mathematical viewpoint, it is therefore sufficient to consider the
simple case of a dipole source at s finite distance from the oylinder; the solution of
the scattering problem for any given source distribution can subsequently be ob-
tained by superposition.

In order to arrive at the definition of dipole, let us consider the scalar point
source defined by

where
9 o 1/2
R -|£-£1| = {(poosﬁ-ploosﬂl) +(psi.nﬂ-plsinﬁl)“+(z-zl)z}

is the distance between the source point (pl‘ ¢1, zl) and the field or observation
point (o, §, 2).

An electromagnetic source at the point (pl, ”1' zl) can be derived from wo
in may ways. For instance, we may take either l//l = gl/o and ¢2 =0 or wl =0 and
wz = wo in equations (2.16). In the first &ange the primary field components are
those of an electric Hertz vector 'q = E‘R‘- ?z' whereas inume second case the
fields are originated from a magnetic Hertz vector qn = -93- Tz. In the notation of
Stratton (1941), I‘,L and ]:;n represent electric and magnetic dipoles of moment

1 (1)
2( )

= ‘l-ire'i'fz and m = 41rfz, respectively.

15
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The components of the fields of an electric dipole (with moment 2“)- 41:?2)

2
i k° 3tk , 3 \ ikR
Ep - (z-zl) E-ppou(ﬁ-ﬁ{)] Q? - -;4- + ns>° ,

are:

3 1kR
' = (z-2 )pllin(ﬂ -p )(— - —l: ;—5'>e , (2.20)
4 i kzl—f2+pf- 2pplooo(ﬁ-ﬁl')] -1 311((1-31)2 3(:-:1)2 1R
E,12* i B T 5 e
-R R R
u‘ = -Iweplaln(ﬁ ¢ ) - -—> “‘R

= fwe [p - p,cos(f-$ )]/ik 'Rl—a>eum ,

H =0,
z

The components of the fields of a magnetic dipole (with moment gu)

= 4y ?z) are
obtained from (2.20) by replacing E with H, H with -E, and € with u.

The scattering of the electromagnetic field of an axially oriented electric di-
pole by a perfectly conducting infinite cylinder can be described by a scalar wave
function ll/: , which is single-valued and twice-differentiable in each of the quantities

lo. 9.2, Py ’1’ z, satisfies the wave equation
(v2 +k2)¢‘1'

jand the boundary condition

16
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end‘ 8
R "%

and originates a diffracted electromagnetic field given by equations (2. 16) with

-0.
pea

ikR
e

s
wl R + Wl ) wz =0,
which satisfies the radiation condition (2.18),
Similarly, the scattering of the electromagnetic field of an axially oriented
magnetic dipole by a perfectly conducting cylinder can be described by a scalar wave]

function 'I/;. single-valued and twice differentiable in p, §, z, pl, L’ zl. such that
ikR
2 .2 8 9 (e 8
(Vi+wy =0, =\ 5R +¢2)p=a= 0,

and that the diffracted field obtained by putting wl =0 and w2 = e“m/ R+w; in
(2. 16) satisfies condition (2.18),

If the surface of the cylinder has a nonzero impedance, then two independent
scalar wave functions are needed to describe the scattered field produced by an
axially oriented dipole source.

In the general case of a dipole source arbitrarily oriented with respect to theﬁ
cylinder axis, it is still possible to derive the solution of the scattering problem
from iwo scalar wave functions wl and wz, representing series of electric and mag-
netic multipoles oriented along the axis. An alternative but entirely equivalent
approach consists in finding explicitly the Green's functions for the cylinder; such
Green's functions are customarily grouped together intc a dyadic Green's function,
whuse derivation for the case of a perfectly conducting cylinder is briefly outlined
in section 2.3 of this report. The use of dyadic Green's functions is noteworthy

17
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for its elegance, and has been particularly advocated by Schwinger (1943, 1950),
Morse and Feshbach (1946, 1953), Tai (1953, 1954a, b) and van Bladel (1964), among]
others. '

When the boundary value probiem is two-dimensional, it is possible to form-
ulate simultaneously both scalar and vector scattering problems. We shall limit our
considerations to the case of a plane wave incident perpendicularly to the cylinder

axis. A scalar or vector plane wave can be considered as a limiting case of a sca-

lar point source or of a dipole removed to infinity. If we let 2y = 0 and ¢1 =7,
then R~ p1+p cos when Py becomes very large, and
ikp
eikR ~ 2 : eikx as —> O
R pl 4 p]. ’
ikp

80 that if the source strength is renormalized by neglecting the factor e 1 /pl, a
scalar plane wave propagating in the 'i\x direction is obtained.

In the two-dimensional case, 8/9z =0, and equations (2.16) simplify, be-
coming

e o dw ¥ g oo e
P p O ° P p 3
o’ ¥
E, = - —_— R H, = iwe — , 2,
¢ (8T 3 ¢ 30 (2.21)
2 2
Ez— kwl , Hz— sz
. = oliX = )
By taking wl—e and qlzz- 0 in relations (2.21), one finds that
gl = k231kpcos¢ . B=rglon-o .
z p ¢ z

18
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| natively, by making ¥, =0andy,=e  in(2.21), one obtains that
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HZ = -MsmpEi , H; = - McosﬁE; .

1kx

E; = \/u/e sinQH; , E; = \lufe cosﬂH; ,

E, = H = H; =0, i = P elocost

which are the components of a plane wave propagating in the i direction with

£ = (iTe 2o ikxy and H'= 12957 |

If a function d/?(p, #) which is single-valued and twice~differentiable in both
variables p and §, can be found such that

(v2+k2)¢f =0, (2.22)
19 ) dkx 8 -
(1- k'nap)(e +c//1) ) =0, (2.23)
p=a
lim 1/2( 9
p—m P / (5; —ik)qp? =0 uniformly in § , (2.24)

then:

(1) the acoustic velocity potential of the field scattered by a cylinder with
n = ¢k/(ws) in the presence of the plane wave wi = eikx is given by wf ; here ¢ is
the density (mass per unit volume) of the medium surrounding the cyliuder and ¢ is
the normal acoustic impedance, i.e. the ratio of pressure to the normal component
of the velocity at the surface of the cylinder (in particular, § = n = O in the case of
a perfectly soft cylinder);

19
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(i1) the electromagnetic field diffracted by a cylinder with relative surface
impedance n = Z Ve?.u in the presence of the plane wave Ez= -Vu/e Hy= kzeikx

is given by relations (2.21) with y, = e"°‘+¢'1', Y= 0.
If a function w;(p. §) can be found which satisfies all requirements imposed
on w: except (2.23) which is replaced by

i
¥
¢
F
&

O eI gy e R

i ~ ikx 8 =
(8p+lkn (e +¢2)\p=a 0, (2.25)

S s .

then:
(1) the acoustic velocity potential of the field scattered by a cylinder with
% = w5/(Ck) in the presence of the plane wave wi= o ig given by 'l'; (in particu-
lar; §-1 =7 = 0 in the case of a perfectly rigid cylinder);
(ii) the electromagnetic field diffracted by a cylinder with % = Z \le/u in the

i
presence of the plane wave H = \]e/u Ey = kze foc is given by relations (2.21) with
ikx .8

In closing this section, we point out that instead of dealing with the scatter-
ing problem from the point of view of differential equations, we could approach the

problem from the equivalent viewpoint of integral equations. In the vector case,

e e

this approach would involve the use of dyadic Green's functions as previously men-
tioned. The introduction of dyadic Green's functions is avoided in the case in which
one wants to determine only the electromagnetic field at the surface of the scatterer
(Maue, 1949). Once the surface fields are known, the fields at any point in space
may be obtained through an integration over the surface of the scattering body
(Stratton, 1941) The use of Maue's integral equation in place of the differential
(wave) equation usually represents a complication of the problem, which may be
counterbalanced by two simplifications: (1) the number of independent variables is
reduced by one and the introduction of a special space coordinate system is unneces-
sary, and (2) the integral equation is the only requirement imposed on the unknown
20
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function, that is, the boundary conditions are automatically satisfied. Maue's inte-
gral equation formulation is therefore particularly useful when the scattering prob-
lem involves boundaries which are not coordinate surfaces in a system of coordi-
nates for which the wave equation is separable, but obviously loses most of its in-
terest in the simple case in which the scatterer is an infinite circular cylinder.

2.2 Plane Wave, Spherical Wave, and Line Source Incidence

In this section, the scattering of a plane electromagnetic wave by an infinite
circular cylinder of radius a with relative surface impedance n = Z €/u is con-
sidered. The formulas which give the diffracted field components as infinite serie
of eigenfunctions are derived for the case of oblique incidence, and they are subse-
quently specialized to the case in which the incident wave propagates in a direction
perpendicular to the axis of the cylinder. The transformation of the infinite series
solutions into contour integrals in the complex plane is discussed.

Particular attention is devoted to the case of normal incidence on a perfectly
conducting cylinder. The behavior of both near fields and far fields is investigated
in detail, for the cases in which either the electric or the magnetic incident field is
parallel to the cylinder axis, Finally, the scattering of cylindrical and spherical
waves is also examined.

Let us consider the incident plane electromagnetic wave

+ :
Ei = (-cosa cos B’fx+ sinB‘i‘y+ sina cos ﬁ’i\z) eik(x sina+z cosa) .

(2. ZG)H

i

H = \Je/u (-cosa sianx - cos ny+ sina sinBTz) eik(x sina+2cosa)

?

which propagates in the direction of the unit vector

l? = ——— sina'i\ +cosaf , 0<a<n) .
il X Z

21
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The inoident electric fleld E' forms the angle B with the (x, z) plane of Fig. 2-2.
It is easily verified that, according to formulas (2.16), the scalar functions

i
!#i - E, . —cosf eikp sina cos P+ ikz cosa
1 kzsinza kzsina

(2.27)

Yo =t 2 [e_/u _g_gﬂ__eikpsmacoa¢+ﬂ:zooaa
2 2 2 2
k sin o k sina

generate the incident fields (2.26).

The scattered fields gs and g‘ may be derived from two scalar functions
¢: and ¢; through formulas (2.16). The functions w: and wg are linear combina-
tions of the elementary wave functions (2.17). Since the cylinder is assumed to be
of infinite length, the dependence of the scattered fields on the coordinate z must be
the same as for the incident fields, that is, both incident and scattered fields vary
according to the factor elkz CO%< " Hence h= kcosa, and only the plus sign is con-
sidered in the exponential of (2.17). Furthermore, the wave functions containing

Jn do not satisfy the radiation condition (2.19), and must therefore be disregarded,

80 that we finally have:
(o)
wi = Z anH:ll)(kp sina) ein¢+ikzcosa ,
=2-00
(2.28)
[0 )
P SR e
n=-

and therefore the scalar wave functions which generate the diffracted fields are
given by:

22
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FIG. 2-2: GEOMETRY FOR PLANE WAVE INCIDENCE.
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ilcz cosa
wl - w: + w: {’O'B.ikp .m000.¢+ i lnAanll)(kp sina) einﬁ:}'

. K sina n=-@
(2.29)
ike cosar
w2=w;+w; _‘n—eu_e_é__ amﬁetkpsmcwoaﬂ_’_
k sina
. ¢
(1) in
+ ZianHn (ko sina) e } ,
n=-q
where we set, for convenience,
n n
i
8= An , = V /u (2.30)
k sina k sina

The coefficients An and Bn are determined by imposing the boundary conditions at
the surface of the cylinder. One finds that (Levy and Keller, 1959):

o G

+ sinB cosaq]
1r(ka) sin
(2.31)

S vell) (1) (1) { ncosa
B - |:1n3{(nJ sina - iJ)(H sina - 1nl-l )+n J H (kasina)?}'

- cosf 2mcosa ]
ﬂ(ka) sina

where
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a=(H (l)sma mn( ))(nﬂ(l)sma m“))+ (.-G"fl—‘:‘%ug) , (2.32)

and the primes indicate the derivatives of the Bessel and Hankel functions with
| respect to the argument kasina. In deriving (2.31), the well known formula

olkP slna cosf i ian(kp sina) .'mﬂ

n*-w

has been used. In particular, in the case of a perfectly conducting oylinder, one
has that

Jn(ka sina) J'(ka sina)
(A) o =-—5—cosB, (B) . - sinf . (2.33)
=0 H:ll)(kasina) an 0~ (1) (ka sina)

The components of the scattered fields are given by:

@
8 ikz cosa n_ing Q) nB (1)
Ep = e Z ie {iAnoosaHn kpsina n} ,

n=-m
g® = _glkzco8 Z_' 1nem¢{nA oone 1P+ ip H(l)'}
[ ) ko sina n n n

E® = oK% gipq i :lA s

n=-qQo

s ikz cosa n_ind (1) (1)’
Hp = \[_ 71 e {kpsina +1Bncosaﬂn },

n=-m

(2.34)
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®
nB cosa
s ikz cosa E : n mﬁ{ (1)' n (1)
Hﬁ clu e e AH - ko sina Hn} ’

nE=-Qm
Q
H: = \Jefu olkE008a o PZ; 1"ann;”em' .

where the argurment of the Bessal and Hankel functions and of their derivatives is
kosina, and An and Bn are given by (2.31).

It is seen that if the ocylinder is not perfectly conducting, then the z-compo-
nent of the scattered electric (magnetic) field is different from zero, even if the
g-component of the incident electric (magnetic) field is zero (see also Wait, 1955)*.

Formulas (2. 34) become less complicated when the incident wave propagates
in a direction perpendicular to the axis of the cylinder (normal incidence, a = r/2).

In such case, the function w: generates a TM field and the function w; a TE field,

whose components are obtained through relations (2.21):

*n connection with this remark, it should be noted that the method given by Stockel
(1962) for deriving the diffracted electromagnetic field corresponding to oblique
incidence from the field corresponding to normal incidence is valid only for per-
fectly conducting cylinders.
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o)
s E : nx
H e/u sinB i"B H

= -isinf

i

s
Ep

where we set:

J ing!
(ka) - inJ’ (ka)

K = Y >
n H( Nka) - in(”( ka) n
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®
E® = cosf Z "X Hu)(kp)em’ . N
z L2 an
®
8 cosf ny (1) inf
H_ e/u = n-ZcoM Knnn (koYe ",

®
H; - {g_/'; icos 8 Z inxnﬂil)'(kp)em, v

(1) 0 o10P N

S=tar

@ ‘

s _ _sing n~ ..(1) in
Ep - "o nsz.m,ni Bnl-ln (kp)e ' ,

ny (1) inf
i ﬁan (kp)e ,

B =-

The scattered electromagnetic field for normal incidence is thus given by the super-
position of a TM field proportional to cos and a TE field proportional to sinf; we
can therefore limit our considerations to the particular cases =0 (E parallel to

the oylinder axis) and 8= 7/2 (H parallel to the axis).

}- TM feld

(2.35)
f TE field
-
J_(ka) - tr” 15 ! (ka)
(2.36)
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From formulas (2.35), one derives the following asymptotic expressions for
the components of the far scattered field:

-4X 2 ikp

E: ~\J2re ? oonb{g;cnxnooan{}-&g [14-0(11'kp7_| ’
-i1Z @ ikp

H;—vJ.% o 4cm.B{nZoncnxnomng}—-7—(:p)3 2 E*‘O(l/kp):' .

Hy ~ - Vel £ [1+oa/k)] .

TM™ field for kp—» @ ;

s 2¢ 4% i -4 1 elkp
H ~ \/—;—E e sinB eanooantl W[HO(l/kpB ,

n=0

-i3 ® ikp
s 4 X e
Ep ~ —\12/1 e smB{ Zo nanncosnl;} —T(kp)S 2 |:1+0(1/k0):l )

E; ~ \ufe H: [1+0(1/k0i] ,
TE field for ko> m®

The infinite series solutions which have been obtained are of practical value
as they stand only when the radius of the cylinder is not large compared to the wave-
length., The number of terms of each series required to give a good approximation
to the infinite sum is of the order of 2ka, so that numerical results are casily ob-
tained only when ka is not very large compared to unity. The procedure commonly
adopted in the case of large values of ka consists in replacing the infinite series
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by contour integrals, which may be evaluated asymptotically™.
As an example, let us consider the case of a perfectly conducting cylinder
(n = 0) with E parallel to the axis, From formulas (2.35) and (2.36) it follows that

Q0

J_(ka)
8 n _‘n (1)
E = - € | =————— (kp) cos n¢ (2 . 37)
z n; n m(ka)

where eo =] and Gn =2 for n 21. Treating the summation over n as a residue

series, the summation is replaced by a contour integral C in the complex v plane
(Fig. 2-3) taken in the clockwise direction through the origin and around the poles
at v =1,2,..., giving:

3 (ka) B Dikod cos v -t
E™ = ~i o e dv . (2.38)L
c Hv (ka) sinvyr

oI

Similarly, in the case of a perfectly conducting cylinder with H parallel to the axis,
one has that

o)

J! (ka)

( )

= Z (ko) cosnf (2.39)]
n=0 n ka)
which becomes:
J'(ka)H( (kp) cos vf -lv-g

H = -iye/u (1)' e dv . (2. 40

2 c (ka) sin 7v

*The contour integral solutions may also be introduced directly, without making use|
of the infinite series solutions (see, for example, Clemmow, 1959a).
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FIG. 2-3: THE COMPLEX v-PLANE
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The current density J at the surface of the conducting cylinder is given by:

d= 6/\_!.1\ :
p=a

so that when E is parallel to the cylinder axis

)
i=31 = i‘z(n;m;) e i -;% Velu nZoeni" ﬁ . (2.4D)
and when H is parallel to the axis
©
J= J¢6 = -foa +6) e y— Eﬁ;eninﬁ . (2.42)
n

In general, for a perfectly conducting cylinder and arbitrary direction of incidence:

Q

n
2 ikz cosa E i cosnfl
J = —— \’e/u e [0083 € +
z rwkasina n=0 2 Hfll)(kasina)

n
+ % cotga sin B Z (;)'sm , (2.41a)
n=1 Hn (kasina)

@®
2i ikz cosa i cos nd
J, = -== \Ie/u sinf e -2- :e - . (2.42a)
g mka n=0 »° H:ll) (ka sina)

The surface current densities J 2 of formula (2.41) and J ¢ of formula (2. 42) may be

rewritten in the form:*

* The signs of the right hand sides of formula (13.4) in the book by King and Wu
(1959) and of formulas (4) and (5) in the English translation of Goriainov's paper
(1958) appear to be incorrect.
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g = 2L ,/ oos vf e-ivgdv (2.43)
z (1)(ka)sin|m
x
= —315- \,e/u (1)?03"1 e-wz dv . (2.44)
bl I-Iv (ka)sin yx

The path C of integration that appears in formulas (2.38), (2.39), (2.43) and
(2.44) may be deformed in various ways in the complex v plane, to give contour
integrals which either can be evaluated asymptotically in & direct marner (e.g. by
saddle point technique), or can be converted into a rapidly convergent residue ser-
ies. Results of these approximation techniques are given in Section IV,

For example, in the case of formula (2, 38) the contour C may be deformed
as indicated in Fig. 2-3, so that

B(DME(CF G
=\ +\| +\ +\ +

C JVA VB JVD JVE JF

where the points A, B, D, E, F, G lie on a large semicircle of radius M with cen-

ter at the origin v = 0, and the contour EF surrounds the zeros v, £=12,...) of
“)(ka) which lie in the first quadrant, and which are first order poles of the inte-

grand function. When the radius M is increased to infinity, the contour integral

along the semicircle vanishes:

B E G

A D B F
(M=) (M=zm) (M=co0)

The remaining two integrals can be manipulated to give (for details see Imai, 1954):
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(2) z

8
E =3 (ko) e dv +
2 (1)
s H, (ka)
(M=00)
F I ) wh  w2r-@) -wI
v (1) e T+e - B
(kp) e dv. (2.45)}
(M=o0)

Both integral representations (2.38) and (2.45) are as exact as the infinite series
(2.37). If a similar calculation is performed on formula (2.40), one obtains:

(2)' L4
f (ka) (g -9)
0 = 1 (1) 2 ‘
z =3 \I [u (1). u (kp)e dy +

(ka)
(M=00)
J' (ka) wp, wr-p) -ivI
(1) e '+e 2
clu _v_'__ H “(kp) e dv,
{_ . Hf,l) (ka) Y eimr _ e-iwr
(M=) (2.46)]

(1)

where now the contour EF encloses the zeros vs (s=1,2,...) of H
lie in the first quadrant.

(ka) which

The scattered fields may be expressed as integrals over the surface S1 of

the cylinder, by using the vector analogue of Green's theorem (Stratton, 1941). If
the cylinder is perfectly conducting, one has that

B =5 \\ de)Aw s (2.47)

51

where r and x, are the radius vectors for observation point and source point re-

spectively, J is the surface current denslty. dS = adﬂ dz is an element of the
cylinder surface, the function d/o— e /R with R-’ |r r I was previously intro-

33
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duced in Section 2.1, and the gradient operates on the coordinates of the source
point.

Formula (2.47) gives the scattered magnetic field as a function of the sur-
face current density. If J is known, the determination of f at every point in
space depends only on the evaluation of a surface integral. In the particular case of
normal incidence, the double integral is easily reduced to a single integral by ob-
serving that J is independent of z and that

- (1)
qtlodz1 = 1‘ero (k'Rl)

-®
with
2 9 1/2
R = {p +a -2ap cos(¢-¢1) . (2.48)
One then finds (Riblet, 1952):
T
Ee.p = -5\ g8 1R )ap, (2. 49)

-

where ﬁl = (aﬁ1 - Q)IR1 . In particular, if the incident magnetic field Lli is parallel
to the cylinder axis, one has that

T
a-pcos(P - @)
H:(p, P = i—‘;‘; J¢(¢1)H(11)(k31) R, 1 dp, (2.50)]

-

with J p given by formula (2. 42), whereas for the other polarization (gi parallel to
the z axis) it can easily be proven that

T

e, = -2 \uje \ 5 0 e 0 pep, (2.51)

-7
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with Jz given by formula (2.41). The results (2.50) and (2.51) can also be ob-
tained by observing that we are essentially dealing with scalar problems with Neu-
mann and Dirichlet boundary conditions, respectively, and by applying Green's
theorem with -14-; Hil)(knl) ae Green's function. Formulas which give the scattered
field as a function of the current density on the surface of the cylinder, such as
(2.50) and (2.51), are especially useful when ka is large compared to unity.

An integral equation for the current density J g is obtained by adding the in-
cident magnetic field l-liz to both sides of equation (2.50) and by choosing the obser-
vation point on the surface of the cylinder. Since the integrand of (2.50) has a sing-

ularity at §= ¢1 when p —>a, particular care must be taken in evaluating the limit
p~»a (Maue, 1949; Riblet, 1952). The final result is:
)sin
i

If E° is parallel to the z axis, the surface current Jz(ﬁ) satisfies the integral equa-
»

4

2

¢1‘d¢1

(2.52)

2

tion: '

Jz(ﬂ) = -2 \le/u oosﬁeﬂmcos¢+

T
-9 g-¢ |
tka (1) 1 ™
5 Jz(¢1)H1 ékasin 3 Dsm 7 | 98,
—r (2.53)

If a Fourier series expansion is assumed for the surface current, the unknown co-
efficients of the expansion may be determined either by direct substitution of the
series in the integral equation for the current, or by means of a variational princi-
ple (Papas, 1950). Of course one finds again the series (2.41) and (2.42), which

were previously derived from the wave equation by separation of variables.

* Formula (28) of Riblet (1952) contains some misprints.
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In order to present a qualitative discussion of the behavior of the current on
the surface of a conducting cylinder, a diagram of both amplitude and phase of the
surface current density Jz = |Jz| e ~Z, computed by means of formula (2.41), is
shown in Fig. 2-4 for the case in which ka =3.1 (King and Wu, 1959). The curves
are obviously symmetric with respeot to the plane of incidence. The phase velocity
v, of the surface current is given by the formula:

v/v, = -h/(d@z/dﬂ) , (2.549)]

where Vo © (eu)_ll 2 is the phase velocity of the incident wave, and dd)z/ dp is the
slope of the phase curve in Fig. 2-4. It is then seen that the phase velocity of the
current around the cylinder surface is greate‘r than Yo in the illuminated region
about § = x, it decreases to a value less than v, &t the shadow boundary p=1n/2,
and maintains a nearly constant value 0.7v_ from f=7/2 almost to $=0. This
means that a given phase of the surface current density creeps around the cylinder
from the shadow boundary into the umbra region as a traveling wave whose velocity
is sensibly constant and less than the phase velocity of the incident wave. An iden-
tical traveling wave of current exists on the other side of the cylinder. The ampli-
tude of the surface current decreases rapidly with § except near § =0 and § = 7,
where both amplitude and phase of Jz are stationary. The behavior at § =t 7 is
easily understood by chserving that the element of cylinder surface is there parallel
to the incident wavefront. The behavior near § = 0O is a consequence of the inter-
ference of the two traveling waves v .ch propagate in opposite directions around the
cylinder and produce a standing wave. The standing wave is clearly observed only
around P = 0, that is in the region where the amplitudes of the two interfering wavesy
are of the same order of magnitude.

Analogous considerations apply to the case in which the incident magnetic
field is parallel to the oylinder axis. However, the current is now in the ﬁ-directlonr
so that the waves propagating around the cylinder may be regarded as longitudinal,
whereas in the case of gi parallel to the axis, the waves are transverse to the
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FIG. 2-4: CURRENT DENSITY J = |J le % ON A CONDUCTING CYLIN-

DER, WHEN Ei IS PARALLEL TO THE AXIS AND ka = 3.1

(King and Wu, 1959).
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FIG. 2-5;: CURRENT DENSITY J |J | ON A CONDUCTING CYLIN-

DER, WHEN Hi IS PARALLEL TO THE AXIS AND ka= 3.1
(King and Wu, T1959).
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direction of propagation. Whonever a standing wave is produced by the interference
of two longitudinal waves, regions of concentration of electric charges exist on the
surface of the cylinder. Such concentrations do not occur when two transverse 10
waves interfere. Phase and amplitude of the surface current density Jg= |J’\ e

for ka=3,1 are given by the continuous lines of Fig. 2-5 (King and Wu, 1859). From
Figs. 2-4 and 2-5 it is seen that the amplitude |J¢| decreases more slowly than
|Jz|, as |f| decreases from 7 to zero. This explains why the standing wave pat-
tern i{s much more evident in Fig. 2-5 than in Fig. 2-4.

Also represented in Fig. 2-4 is t}x difference ¢E - d)‘ between the phase
$p of the total electric fleld E_ = lEzl e  ata point § on the surface of the
cylinder and the phase (bi = kacos§ of the incident field at the same point. The
broken lines of Fig. 2-5 represent amplitude and phase of the traveling waves of
surface current density, as given by Fock's high frequency approximation (see
chapter IV).

A detailed graphical representation and a discussion of the properties of the
total electric (magnetic) field in the vicinity of the cylinder when the incident elec-
tric (magnetic) field is parallel to the axis were given by King and Wu (1957, 1859).
The numerical results necessary for such discussions may be obtained easily
through formulas (2.37) and (2.39), when ka is not large compared to unity. The
main features of the diffraction phenomenon as well as surface current distribution
for the case of Ei par;uel to the cylinder axis and a = 0.16A are illustrated in
Fig. 2-6 (Carter, 1943). The amplitude of the total electric field in the back scat-
tering direction |#| = 7 (Fig. 2-6a) resembles the amplitude 2|sink(x-a)| of the
total field originated by the reflection of a plane wave incident perpendicularly on an
infinite conducting plane at x=-a. In both cases, the amplitudes exhibit atanding
wave patterns whose maxima and minima are practically located at the same points
along the negative x-axis, However, in the case of the plane (ka =), the amplitude
of the standing wave is a periodic function of x with period A/2, whereas in the
case of the cylinder, the oscillations of the amplitude pattern about the constant

38




THE UNIVERSITY OF MICHIGAN
7133-3-T

2.0

Waove
Direction

| Primary Field—, | /\ /\ A

Total Electric Intengity (R.M.s.)ﬁ

'QO

Total Electric Intensity (R.M.S.)

P/ 1.0 ' 2.0

2.0

1 [ 1
ix
Wave
S
Direction

..o:/\v/\ SNaN

- | Total Electric
. intensity
- (R.M.S)
O ) ) 1) L L} LO L AL  J v L T
¥ L { '
2.0 1.0 P/ I P/ '1.0 2.0
()

FIG, 2-6a,b: DIFFRACTION OF A PLANE WAVE BY A CONDUCTING
CYLINDER, WHEN E IS PARALLEL TO THE AXIS AND

a = 0,16\ (Carter, 1943)
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amplitude characteristic of the incident field decrease as |x| increases, and vanish
at x = -. The diffracted electric field in the back scattering direction may there-
fore be considered as produced by the interference of the incident wave with a cylin-
drical wave propagating radially outward from the cylinder (scattered wave).

Since the diffracted field very near the cylinder along the negative x-axis is
very similar to the field near a conducting plane, one may try to describe the field
in the {lluminated region around || = 7 in terms of the plane tangent to the cylinder
surface at the azimuth P and of the plane wave arriving at an incidence angle = -19|.
For a given value of §, one still finds a standing wave pattern in the radial direc-
tion, which is more and more spread out as |ﬁ| decreases from 180°; the distance
between two adjacent maxima (or minima) is equal to A/(2lcos§|). The spreading of
the pattern is evident in Figs. 2-6a and 2-6b, where the cases |#]| = 7, 7/2, and
zero are illustrated. The agreement between this simple mterpretatlon and the
exact result (2.37) is good whenever cos§ is bounded away from zero,

Thus we find that in the {luminated region |@|~7, the total electric field
may be interpreted in terms of a standing wave in the radial direction and of a trav-
eling wave which moves along the surface of the cylinder away from the negative z-
axis with a phase velocity greater than Vo Similar results are valid for the case in
which the incident magnetic field is parallel to the axis of the cylinder (King and Wu,
1959).

The behavior of the scattered electric field near the cylinder when Ei is
parallel to the axis is illustrated in Fig. 2-7, for =0, 7/2, and 7 and for various
values of ka (Adey, 1958). It is seen that the back scattered field amplitude never
exceeds the incident field amplitude, and, for a fixed kp, increases with the cylin-
der radius (Fig. 2-7¢). On the contrary, the amplitude of the forward scattered
field sometimes exceeds the amplitude of the incident field and oscillates about that
value (Fig. 2-7a), so that the scattered field in the shadow region and in the vicinity
of the cylinder surface does not behave like a divergent wave.

If a plane wave is incident on an infinite cylinder perpendicularly to its gen-
erators and at an angle ’o with the x-axis, then the far scattered tield components
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in the electromagnetic case, or the far scattered pressure and velocity potential in
the acoustical case, may be expressed in the form

) T
WL ot
*Po’ Yrko © » a8 p—wo. (2.55)

The far field amplitude function f(f, ¢o) has the following well known properties (see
for example, Karp, 1961):

H
!

1, 8) = €@ +n, p+m) , (2.56)
27
2
[t®. 9 )] ap = 27 Res(p .9 ) . (2.57)
0

Equation (2.56) may be obtained as a limiting form of the reciprocity theorem for
Green's function; relation (2.57) constitutes the so-called forward amplitude theo-
rem. In the case in which _gi is parallel to the generators of a metal cylinder
(acoustically soft cylinder), it can be proven that f(§, ’o) is a function of the dif-
ference (§- ¢°) if and only if the cylinder has a circular cross section (Karp, 1961).
The far scattered field amplitude pattern that a plane wave at normal inci-
dence on a circular cylinder produces in the azimuthal plane depends upon the value
of ka; a particular case is shown in Fig, 2-8 (Faran, 1951). For small values of
ka the pattern is nearly independent of §§ (Fig 2-8a), but lobes develop as ka in-

creases (Fig. 2-8a,b and c).
The phase of the far scattered field is a complicated function of both § and

ka., In the case of electromagnetic scattering with _E_1 parallel to the axis of the
metal cylinder, the far scattered electric field easily follows from relation (2,37):

ikp-1% J (ka)
8 ~ ' 2 4 E n
n
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FIG. 2-8: AMPLITUDE PATTERN OF THE SCATTERED PRESSURE p8 PRO-
DUCED BY A PLANE WAVE WITH PRESSURE p' NORMALLY INCIDENT
ON A PERFECTLY RIGID CYLINDER. The scales show the quantity

lim
pP—>m

1/2 |p®/p!|(7kp/2)1/2 as a function of §. (Faran, 1951).
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FIG. 2-9: DIFFERENCE BETWEEN THE PHASES OF THE FAR FORWARD

SCATTERED FIELD AND OF THE INCIDENT FIELD, WHEN gi
IS PARALLEL TO THE AXIS OF THE PERFECTLY CONDUCTING
CYLINDER. (Adey, 1958).
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The difference 6 between the phase of the far scattered field in the forward direc-
tion P = 0 and the phase of the incident field, both evaluated at the same point, is
therefore given by:

: G-arz{it J(ka)}-

(2.60)

iy

ke (1)(ka)

and decreases monotonically from the value 57 /4 at ka =0 to the limit value 37 /4
for very large cylinders, as is shown in Fig. 2-9 (Adey, 1958).

. In the case of _@1 parallel to the axis of the metal cylinder, the back scatter-
ing ocross section op per unit length, defined as

2 2

8
"01
2np _T

Y

8
lim Ez

E p—>wm E;

_ lim
p—>rm

is easily derived from relation (2.59). One finds that

4
op = ;A(ka) . (2.61)

where

n

€ (-1)* —B—o
n (1)(ka)

(2.62)

2 J (ka) 12
A(ka) = l

n=0

This is also the cross section per unit length for an acoustically soft cylinder. Sim-
ilarly, in the case of Ll’l parallel to the axis of the conducting cylinder, the back
scattering cross section o__ per unit length defined as

H
8,2 s .2
0_11m2”_11g=11m 1r£2-
Hp-—)mpi p—>»0 pi *
Hz '//2
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may be obtained from relation (2.39). One finds that

4
ou = T{B(ka) . (2.63)
where
n Jl'l(ka) 2
B(ka) = € (-1) TR (2.64)
n=0 ° H " (ka)

This is also the cross section per unit length for an acousticaliy rigid cylinder.
The quantities A(ka) and B(ka) are plotted in Figs. 2-10 and 2-11 for ka € 10
(Senior and Boynton, 1964). The broken lines show the geometrical optics approxi-

mation f ka (see section IV). It is seen that o is always larger than the geomet-

E
rical optics approximation o 0.- T and increases monotonically with ka, where-

as g, oscillates about the geometrical optics value as ka increases. The ratios

H
OE/ag o, &nd GH/ag.o. are plotted in Fig. 2-12.

The total scattering cross section % otal Pe¥ unit length is defined by the
ratio of the time averaged total scattered power per unit length of cylinder to the
time averaged incident Poynting vector. In the case when Ei is parallel to the axis
of the perfectly conducting cylinder, one has that

g

8
———[9E(p,.$.)
=1 8 z"1’"1
Pl=ﬂ

-T

where the bar above E: indicates the complex conjugate. Observing that
] I |
Ez(a, ¢1) = -Ez(a, ¢1), and that

i
i z'1'"1 _
Ez(a, pl) |:__ap__.] adgl =0,

-1 1 =g
P

g

the total scattering cross section becomes:
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T
s 41— [®E,(p,.§)
Ytotal km{‘ E,a.8) ,:_%871-—1_ af,
-” p =a
1
T -ikacosﬁl
= a\Yufe Re szl)e dpl} (2. 66)
-7

According to notation (2.55), the scattered field E: given by (2.51) may be rewrit-
ten in the form:

8 ’ 2 i(kp-%)
Ez(P. §) ~ f£(§,0) 7k © , as p->® , (2.67)
where
n
-ika cos(p, - §)
f(g,0) = -% ufle Jz(¢1)e 1 d¢1 . (2. 68)
-7

From formulas (2. 66) and (2. 68) the impor:iant result follows (Papas, 1950):

4
% otal = "k Re £(0, 0) . (2.69)

The total scattering cross section per unit length is therefore proportional to the
real part of the far field amplitude function, evaluated in the forward direction.
Since the phase of f(0,0) is given by (6 + 7 /4), where 8 is the angle plotted in Fig.
2-9, the real part of £{0,0) cannot be positive, and therefore one has the obvious

result that o is never negative and becomes zero for ka = 0. From formula

total
(2.59) it follows that

QQ

J_(ka) |
£0,0) = - z;e , (2.70)
n=0 ° H:ll)(ka)

hence
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o 3%(ka)
Z € — o , 2.1)
n=0 o 3 (ka) + Nﬁ(ka)

%l

Ttotal

where H:l)(h) = Jn(ka) + mn(k")’

In the case in which a finite and nonzero impedance exists at the surface of
the oylinder, the calculations of far fields and cross sections become rather compli-
cated. From the computational viewpoint it is then advantageous to use the so-called
phase shift analysis. In this method the incident plane wave is expressed as a sum
of modes, each of which is characterized by a certain angular dependence, The per-
turbation that the scattering body introduces in the field of the primary wave at large
distances from the scatterer manifests itself by a shift Y in the phase of the radial
dependence associated with the nth angular dependence. The phase shifts 'rn are
entirely determined by the boundary conditions and are, in general, complex quanti-
ties. Their imowledge permits the determination of the amount of scattered radia-
tion and of its angular distribution. The phase shift analysis is outlined in the fol-
lowing; further details may be found in the literature (Lowan et al, 1946; Lax and
Feshbach, 1948).

It was previously found that when a plane wave wi = eikx propagates perpen-
dicularly to the axis of a cylinder on whose surface an impedance boundary condition
holds, then the scattered field is given by:

o ————— H

nf:) (ka)+1(C - iD)H:ll)(ka) o

o
J'(ka)+i(C - iD)J_(ka)
v = - Z:(;, Enin - = (1)(kp) cosnf , (2.72)

where C and D are real quantities. In the acoustical case, wi and ws are velocity
potentials and C-1iD = w5/(Zk) is the relative (or specific) acoustic admittance of
the surface of the cylinder; the density § and the normal acoustic impedance ¢
were defined in section 2.1. In the electromagnetic case, if _gi is parallel to the

cylinder axis then wi= Eiz, l//s = E:, nd C-1D = Z-'1 u/e is the relative surface
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admittance, whereas for l_-ll parallel to the axis, one has that wi = Hi, ws = H:. and
1C-1iD = Z\e/u is the relative surface impedance.
Formula (2.72) may be rewritten in the form:

"i‘Y
v = -Z € g n siny_ H:ll)(kp) cosnf , (2.73)

where the phase shifts 7, are given by:

T
= g L - -
A 'Sn 2 arctan {Un i(C 1D)Tn} , (2.74)
with
= tan(s! —5 + 7 o - Tka J.2
v tan(an s+ 2) , r == Jn(ka) + Nﬁ“‘“{} ,
(2.75)
Jn(ka) Jl'l(ka)
an = arctan | - m , cSl'1 = arctan | - N' (ka)
n n
Similarly, the diffracted field is given by
@ .
i 8 n My
v = leyd = zn'O e i {cos'yan(kp) +siny N o)} (2.76)
and the total scattering cross section per unit length by:
1 Zm: ZIm'yu 41m'yn
Total = & - enE-2e cos(2 Re'yn) +e } . (2.77)

In particular, when gi is parallel to the axis of a conducting cylinder one finds that
t'.an'yn =tans , so that relation (2.77) reduces to the form (2.71).

The quantities 8 s Un and Tn wh'ch appear in (2.74) can be computed with-
out specifying the impedance at the surface of the cylinder. Lax and Feshbach

(1948) published tables of Tn and Un for the parameter values n = 0(1)20 and
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Al

ka = 0(0,.1)10, whereas 6 6;1 and \[fJi(kaHNz(ka) had been previously tab~
ulated by Lowan and associates (1946) for the same values of n and ka. Tables of

A

\r{Ji(kaHNﬁ(ka)} for n=0, 1 and ka = 0(0,2)16 may be found in the book by
Watson (1922).

The phase shift analysis is obviously not limited to cylindrical scatterers.
For example, Lowan (1946) and Lax and Feshbach (1948) also carried out extensive
computations for absorption and scattering by spheres. Finally, the method can be
applied to the more general case in which the impedance on the surface of the scat-
terer varies with the direction of incidence, by associating with the nth angular
dependence a quantity (Cn— 1Dn) which is a function of the summation index n

This section ends with a few remarks on the scattering of cylindrical and
spherical waves. If a line source parallel to the cylinder axis is located at (p =b,
§=x), then the incident cylindrical wave is givan by (Stratton, 1941)*:

o, P = AH‘l)( kR)

r"
AZG (-1n)° u)(kb)Jn(kp)cosnﬂ , p<b,

= ¢ (2.78)

AZG (- P (kb)H( )(kp)cosnﬁ p>b,
\_. n=0

where R = (p2+b2+2bp cos ¢)1/ 2. For a comparison with the case of plane wave
mcidence in which w‘i = eikx, it is useful to choose A=1 /H(l) kb), so that in both
cases d/ is equal to unity along the cylinder axis. The scattered wave may be writ-
ten in the form:

* Formulas (26) and (27) of Adey (1958) contain some misprints.
54
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O
QJ_(ka)
o = -2 e —E— 1w iprcosnp,  (2.79)
=0 QH_ka)
where
Q=1 for y =0, Q'—'E{l—ka) for%g =0,
=a p=a

and the coefficients have been determined by imposing the boundary condition on the
surface p = a of the cylinder. However, these calculations are sometimes unneces+
sary, since many results concerning the scattering of a cylindrical wave can be
derived from the known results [or the scattering of a plane wave. Thus, if the fiel
at the point (p =b, @ = 0° (¢ ?800)) due to a plane wave propagating in the direc-
tion P = 0° is known, then, or the basis of the reciprocity theorem, the far field in
the direction ¢ = 180" lue to a line source at (o =b, # = 0° (or 180%) is also
known (Adey, 1958). Furthermore, it is shown by Kodis (1950, 1952) that if the line
source is ufficiently far from the cylinder and this is not too large, namely if

a?/(2p?) «< 1

then the scattered field is essentially equal to that produced by an incident plane

ik(R - b) A

wave wi = eikz, whereas the incident field may be taken as equal to e
few patterns of the far field amplitude of the pressure wave scattered by a rigid
rylinder were computed by Faran (1953) for different values of kb, Faran concluded]
t' ore should expect little change from the plane wave scattering pattern, provided
that a/,< 0.1, Zitron and Davis (1963) computed a quantity proportional to the ampli-
tude of the far scattered field as a function of ¢, for ka = 1.0 with kb=2,5, 10, 20;
ka = 3.4 with kb = 6.8, 13.6, 17, 68; and ka = 10.0 with kb = 100, 200, 500, for
both Dirichlet and Neumann boundarv conditions; they also pointed out that Faran's

curve for kb = 6.8 is incorrect. In the case of the hard cylinder, oiher results
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wore published by Shenderov (1961), who plotted the amplitudes of both scattered and
total far fields as functions of P for ka = 2, 6, 10 and b = 1,2a, and compared
numerical and experimental dingrama of the amplitude of the total far field for

ka = 6,10 and b =5, 2a.

Finally, since the entire following section is devoted to the case of dipole
sources, we here limit ourselves to pointing out that useful relationships exist be-
tween the current distributions on perfectly conducting cylinders of axbitrary cross
section (in particular, circular), illuminated by plane or spherical waves. These
relationships were established by Brick (1961), who utilized integral equations for
the electromagnetic field put into an appropriate form by means of a Fourier inte-
gral operation, and obtained the leading terms of series expansions in powers of
(kRo)-l by the methoa of steepest descents, Brick's results are thus valid for
kRo >>1, where Ro is the distance between the source point and that point of the
cylinder axis which belongs to the azimuthal plane containing the observation point.
2.3 Dipole Sources

In this section, we consider scattering from infinite cylinders when the exci-
tation is an elementary source, i.e., an infinitesimal dipole, located at a finite dis-
tance from the cylinder, Although some results are included for the case when the
dipole is on the surface of the cylinder, the subject of radiating slots, and the equi-
valence of slots and dipoles, is not treated. The reader is referred to the exhaus-
tive treatment of Wait (1959) which also has an extensive bibliography. Our con-
cern here is with sources off the cylinder and the limiting case is touched on only
briefly for comparison.

In 1943 there appeared two independent treatments of the problem of scatter-
ing of dipole fields by cylinders, Oberhettinger's and Carter's. Oberhettinger
derived the exact field scattered by a cylinder with the electric dipole oriented
parallel to the cylinder axis and also presented far field asymptotic approximations.
Carter used the reciprocity theorem and the results for plane wave incidence to cal-

culate the scattered far field for dipoles and arrays of dipoles.
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There are a variety of methods for deriving the expressions for the field scat-
tered by an arbitrarily oriented dipole. Although differing in detail, they share two
essential features, a representation of the field in terms of electric and magnetic
Hertz vectors and, ultimately, satisfying boundary coaditions on the surface by suit-
ably matching the scattered part of the Hertz vectors with the incident field through

the expansion
@© on
ikR -ih(z-2z )
e _ 1> (1) 0
R "2 Ln:(-)J encosn(ﬁ-ﬁo) dh Eln(wéﬂn (M>)e -} ,
-®
where
pe=minlp.p ),
py, = mMax (p.po) ,

h=vk—h2.

The process is completely analogous to that employed earlier in the case of
plane wave incidence (cf. Eq. 2.28) though more cumbersome due to the integration
over h, Here, as before, some special cases offer inviting simplification, e.g.
when the dipole is parallel to the axis of the cylinder and one Hertz vector suffices
to represent the entire field (this is the case treated by Oberhettinger (1943); see
also Wait (1959) and Harrington (1961)). It is also possible to construct the field due
to an arbitrarily oriented dipole by suitably operatingonthe field scattered by an arbi-
trarily incident plane wave (Senior, 1953). The resulting expressions, regardless of
the method used to obtain them, are cumbersome and the elegance exhibited by any
particular method is usually compensated by an atrocious calculation equivalent to
matching coefficients in expansions of the incident and scattered fields.
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In treating scattering problems when the source is an arbitrarily oriented di-
pole or distribution of dipoles (e.g. current), it is now fashionable to employ the
dyadic Green's function, e.g. Morse and Feshbach (1953), Van Bladel (1964) and
Tai (1953, 1954a,b). This procedure enables one to formally discuss the solutions
of scattering problems without actually calling into play the inevitable complicated
representation of solutions of particular problems. Of course, if it is these pertic-
ular solutions which are sought, then the tensor or dyadic Green's function, as a
labor saving device, loses much of its value. Still it does provide a systematic way
of presenting the results and a brief discussion will be given followed by the explicit
representation of the dyadic Green's function for a cylinder with a number of special
cases,

If the time harmonic Maxwell's equations for a current source J at & finite
distance from a perfectly conducting scatterer S, are written

VAE = iwuH ,
(2.80)
VAH = -iweE+J ,
then the electric field satisfies the inhomogeneous vector wave equation
, 2
VAVAE-KE = fwd ,
the boundary condition
oA _n_:‘ =0,
S
and the radiation condition
r AVAE+IKE = o(l/r) . (2.81)

If V denotes the volume exterior to S, then the solution of the problem may
be written as
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E(x) =t | Glr,r)) J(r,)dr, (2.82)
v

where G(r, 31)* is the dyadic Green's tunction and satisfies
VAYAG-KG = s(z-r)1 .

; is the identity dyad,
nAG| =0,
=
S

TAVAG+IkG = ofl/r) .

The nine rectangular Cartesian components of the Green's tensor are nothing
else than the total electric field components fur electric dipole sources oriented
along the coordinate axes. That is, if iwud is chosen to be ?xa(xl - no) then equa-
tion (2.82) yields

E@r) = Gr.x )

0

Vi

If we use a superscript x to denote the orientation of the dipole source, i.c.

EYzr) = gzr) 1,

then clearly

En) = gnr) 1,
EXx) = Glex) -,

Thus we see that it is possible to conetruct the components of the dyadic Green's

* A double underlining will be used to denote dyads.
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functivn if we know the response of an arbitrarily oriented dipole source. In fact,
these are entirely equivalent pieces of information.

For a perfectly conducting infinite cylinder the dyadic Green's function is
given by Tai (1954b) as

G(r.r,) = 4 VB dhz {(3)(11 )[ (1)( h,x;)+a M/ M )( h, rﬂ
©

+ M, ;)[_uf)‘n’(-h.; 1+ M(-bx) |+
(3) (1) (3)
+§en(h,_r_)[_rjen(-h )+B Nop-hX, )+

+H§?(h,£)Eggn)(-h )+B xu )( h,r Zl} . forp >p1, (2.83)

where

M (bp=e |: % / (Ap) cos n 95 - z 00 cos n¢¢]

)

(+]

N (h )=£:h—-2( ) oo ng? 1 28 2 (p) *1% g+
Zen' ¥ k A *p a® cc:sn¢¢

2 COo8 A
+2%z Qo) nﬁz] '

J1(a) J 0a)

(1)'()@) ! n H:ll)(ka)

Q

"

Re)
|

The superscript (1) on M and N  signifies that Z is J the Bessel function of

the first kind. The superscript (3? means Z is the Bessel function of the third kind
(1)

or Hankel function H . When Py >p, r and x must be interchanged in (2. 83).
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Equaticns (2.82) and (2.83) have been employed by Tai (1964) to obtain expli-
cit far field results for two electric dipole orientations, longitudinal and transverse
(also called vertical and horizontal dipoles).

The integration in (2.82) is easily accomplished since J is always a delta
function. The integration in (2.83) is carried out by the method of saddle points
(e.g. Wait (1859)). In the results both cylindrical and spherical coordinates are
employed, so that the familiar factor elk.r/ r is exhibited.

Recall that

r= \p t+z .
sing =

a) Longitudinal Dipole

The current is given by

6(p- po) 6(f- ¢o)6(z)
P

N>
-

J = -jweA

where A is a constant (A= p(l)/e, where pm

far electrin field is (compare with (2,29)):

o lkp smecos(¢ ¢) n Jn(kasine)
= -9 —'—"k sin6A € (-j) ——— X

n=0 ° H::)(ka 8in 6)

is the dipole moment). The total

(1)(kp sin 8)cos n(f - ¢E} (2.84)

The far field of a longitudinal dipole in an azimuthal plane (constant 8, 0< § <2,
sec Fig. 2-14) is proportional to the far field of a line source (radiating at a longer
wavelength) parallel to the cylinder through (po, ¢O) (see equations (2.78) and (2, 79)
where Py = b, ¢° = r). If the dipole radiates with wave number k, the equivalent

61




THE UNIVERSITY OF MICHIGAN

7133-3-T
——L
(r,6,¢)
P r
La' - ;.y
0 B
i
\
X 1 Dipole
FIG. 2-13




THE UNIVERSITY OF MICHIGAN -
7133-3-T

line source radiates with wave number kain6. In the plane of the dipole (6 = 7 /2)
the wave numbers are equal. Explicitly, the far field of an electric line source

A _a (1) IR .
parallel to the cylinder axis (E i AHO (k \/;l tey procoa(¢ ﬁo) ) is:

ﬁ;; {-ikp coa(¢ ¢ )

J (ka) (1)
-Ze )" —Tl_)__ (ko )cosn(¢ ¢) . (2.84a)
ns0 " (ka)

The fleld of an array of longitudinal dipoles of strength A, at points (o, ¢l)' all in
the plane z0 = 0 {8 given by

ikr -ikp, sinf cos(Pp-p,)
E=-32-—sin9k2§:AE t l-
- 4rr 7 1

i J (kasin6) ) . p}
€ (-)° (ko,sir0)cosn(f-9.)
£5 ° (l)ﬂca 810 6) n | 2

lkp-""'

Im

(2.85)
Note that to this order in 1/r only E, is nonzero.

b) Tranaverse Dipole

6(p - po)6(¢ - ¢°)6(z) .
X
p

J = -jweA

The total far field in the plane of the dipole (Oo =7/2, 2z = 0) is
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—ikp cos(¢ ¢) 1 - -~ Jn(ka)
E = rkﬁ[ --Z (-1) X

E=ta ‘”'(ka)

Xﬁll(ll_)l(kpo) sinE1¢-(n- 1)¢J + H(l) (ke )sin[nﬁ (n+ 1)¢j}:|

(2.86)

N

The field due to an array of such dipoles of varying strengths, Al , 18

ikr -ikp cos(ﬁ-ﬁl) - J! (ka)
e 2 J 1 ntl n

2" BZA [Zsin% B N NP g
4rr ] 2 o~ 1 H(1) (ka)

x {H(n (ko) sin [0 - (- 19 ] + B (ko st - (n+1)¢ﬂ}]

(2.87)
In this case only E¢ is nonzero.

Note that in equations(2.84) to (2.87) the constants A or A, may be com-
plex, Al = :A!Iewll, thus governing both amplitude and phase of the source.

Carter (1943) has carried out a large number of calculations of far field pat-
terns from arrays of longitudinal and transverse dipoles. The problem with which
Carter was concerned was that of achieving omnidirectional azimuthal radiation pat-
terns for arrays of dipoles around a cylinder (transmitting antenna on the Chrysler
building). His approach was to calculate the radiation patterns of various symmetrid
arrays of dipoles with a variety of related phase differences betweern dipoles and then
observe which pattern most closely achieved the desired shape. While this may not
now be considered the most direct way of treating this problem, the patterns calcu-
lated by Carter may prove useful for other purposes.

Carter employed the reciprocity theorem and the known results for plane
wave incidence to arrive at the expressions (2.84) to (2.87), This avoided the
asymptotic evaluation of the integral in (2.83), since the asymptotics are in a sense
alreedy carried out for plane wave incidence. Ior plane wave incidence Carter has
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computed the magnitude of the electric field as a function of distance from the cylin-
der for § =0, 7/2, 7, 37 /2 and ka=1. He also calculated surface current for this
case and this has already been given in Fig. 2-6c. In the case of dipoie excitation,
Carter has made numerous calculations. For a single longitudinal dipole the mag-
nicude of the electric field in the far zone is given as a function of azimuthal angle
in Fig. 2-16 for a dipole .24\ from the cylinder axis and various cylinder radii
(-a/x = .0016, ,0318, .08, .16, ~~.24 ). Also included in this figure is the pat-
tern of a transverse dipole located .24\ from a cylinder of radius .16\, The near-
ly circular pattern for the smallest radius is quite distorted, without any definite
relationship between the geometrical shadow and the shape of the pattern. However,
for large cylinders the pattern is quite different from the patterns of small cylin-
ders as seen in Fig. 2-17, where the far field is plotted for a longitudinal dipole
.8781 from the axis of a cylinder of radius .383A. Carter attributes this to reso-
pance effects.

Carter's results for arrays of dipoles include longitudinal (vertical) dipoles
(1,2, and 4 fed in phase) located .878\ from the axis of a cylinder of radius .383a
(see Fig. 2-17), and 4 transverse (horizontal) dipoles fed in phase, phase rotation,
and pairs in phase, other pairs out of phase (see Figs. 2-18 to 2-20). The trans-
verse dipoles are located ,796A from the axis of a cylinder of radius .637A. The
patterns given here are in the plane containing the dipoles; additional patterns in
other planes are contained in Carter's original paper. A word of caution is called
for regarding the use of Carter's analytic expressions of the far field. Numerous
errors were found in these formulae, e.g. using Carter's equation numbers, terms
in equation (48) should alternate in sign, equation (50) is completely incorrect, a
factor j is missing from equation (51), terms in equation (55) should alternate in
sign, etc. A spot check of the computed patterns, however, indicates that the cor-
rect formulas were used and the errors apparently are typographical. A complete
recalculation of all the ratterns was not undertaken. It is recommended that any
quantitative application of Carter's results be accompanied by a suitable verification.
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FIG. 2-17: FAR-ZONE ELECTRIC FIELD PATTERN IN THE AZIMUTHAL PLANE,
FOR DIPOLES PARALLEL TC THE CYLINDER AXIS (Cart 943)




THE UNIVERSITY OF MICHIGAN

7133-3-T

i o gl oedpiinsre TIREREG

(eP61 ‘I33x8D) ISVHI NI Add STTOJId ISHIASNVUL H10d HOd
‘ANVId TVHLAWIZYV JHL NI NYALLVd TIILd OIMLOATY INOZ-HVA ‘81-¢ "DId

utA9 Yoy m

- s

68




(E¥P61 ‘X9IED) NOILVTIH ASVHA HALHVND NI SHIvd ‘SSVHJ NI
34 STTOdId A.LISOddO ATIVOMLINVIA ‘STIOJId ASHAASNVHEL HNOA
HOd “INVId TVHLAWIZY JFHL NI NHALLVd AQTdId OI4LOATA INOZ-HVI 61-2







THE UNIVERSITY OF MICHIGAN
ﬂ 7133-3-T

Lucke (1951) derived the Green's function for a dipole in the presence of a
cylinder (both elliptic and circular). The result is contained in (':.83) and shall not
be repeated. An earlier version of Lucke's work (1349) contained an error in the
expression for the field but this was removed and agreement with Carter's result
was obtained. Lucke calculated the scattering pattern (see Fig. 2-21) for a longi-
tudinal dipole located .238A from the axis of 2 cylinder of radius .G76A. Thie is
almost identical with one of the cases calculated by Carter and the patterns do coin-
cide. (Lucke's scale is a factor ka = ,5 smaller than Carter's and this must be
taken into account to obtain agreement).

Sinclair (1951), as Lucke, obtained some results for antenras in the pres-
ence of circular cylinders while investigating the more general case of elliptic
cylinders. His results agree with Carter and are easily obtained from the expres-
sion for the Green's function given in the beginning of this section,

Wait and Okashimo (1956) have calculated radiation patterns of a radial di-
pole and pairs of diametrically opposite in-phase radial dipoles, located on the sur-
face of a cylinder for cylinder radii a/x = .0315, .125, .335, .915, 1.54. The
patterns were computed from a theoretical result equivalent to (2. 86) and (2. 87) for
special values of ¢l (¢0= 0 for single dipole and ¢o =0, ¢1 = 7 for the pair). The
patterns were compared, with excellent agreement, with the experimental results oﬂi
Bain (1953) and are presented in Figs. 2-22 and 2-23.

Oberhettinger (1943) computed the far field pattern for an electric dipole
parallel to the axis of a cylinder of radius a=X. The dipole locations were 5/4x,
3/2x, 7/4), 2x from the cylinder axis and the patterns are all in the horizontal
plane (6 = 7 /2, see Fig. 2-24). The complexity of the pattern is seen to increase
with distance of the dipole from the cylinder,

Levis (1959, 1960) has made extensive calculations of a radial dipole on a
cylinder. This corresponds to a transverse dipole as defined in (2.86) when the di-

pole is normal to the surface of the cylinder as well as its axis, i.e., ¢° =0, He

has computed the real and imaginary parts of E 0 and E ¢ as well as their magnitude
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FIG. 2-23a: RADIATION PATTERN (PROPORTIONAL TO 1[%!:) IN THE AZIMUTHAL
PLANE, FOR TWO RADIAL DIPOLES DIAME ALLY OPPOSITE
ON THE CYLINDER SURFACE AND FED IN PHASE,
Case af\ = 0,0315 (Wait and Okashimo, 1956).
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FIG. 2-23b: Case a/A = 0.125 (Wait and Okashimo, 1956).
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FIG. 2-23c: Case a/) = 0.335 (Wait and Okashimo, 1956)
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FIG. 2-23e: Case a/) = 1,54 (Wait and Okashimo, 1956).
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for A varying from .05 to .5 in increments of .05. The field quantities are tabulated
to five figures for the full angular range in increments of 5°. It must be noted that
Levis has oriented his cylinder along the x-axis, thus in order to compare his for-
mulae and calculations with Carter, Wait and Okashimo, etc., one must rotate co-
ordinates using the relations given explicitly by Levis,
2.4 Scattering of Evanescent Waves

Inrelationto certain physical phenomena, such as the Smith-Purcell effect,

it is of interest to investigate theoretically the scattering of an evanescent {(or sur-
face) wave by an infinite metal cylinder. 7This study has been performed by Ronchi
et al (1961), and {8 summarized in the following. Another work on this subject has
recently been published by Levine (1965).

A concrete physical situation, in which this problem arises, is illustrated
in Fig. 2-25. A plane electromagnetic wave is totally reflected at the plane interfac4
A-A which separates two media with different refractive indexes, giving origin to a
surface wave in the medium with smaller index of refraction. The surface wave,
whose amplitude decreases exponentially as the distance from A-A linearly in-
~1eases, and whose planes of constant phase are perpendicular to A-A, is scattered
by the infinite metal cylinder C. It is assumed that the distance d between interface
A-A and cylinder axis is so large compared to both cylinder radius and wavelength
of the incident radiation, that multiple scattering effects may be neglected.

The notation of Fig. 2-2 is used, but it is now assumed that the plane of in-
clidence (ﬁ, '1\2) forms the angle ¥y with the positive x-sxis. According to formulas
(2.16), the components of the electromagnetic field incident on the cylinder are gen~

erated by the scalar functions:

,1,: = w:»!exP Ek(xcos'ysina+ ysinysina + zcosaﬂ , (1 =1,2),

where
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FIG. 2-25: A SURFACE WAVE IS ORIGINATED BY TOTAL REFLECTION
AT A-A, AND IS SCATTERED BY THE CYLINDER C.
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N Vog = Velu 5o—.
k sinea k sina

In order that the W: 's represent an evanescent wave attenuated in the ?x direction,
the quantities cosa and sinyysina must be real, whereas cosysina = iQ with Q
real and positive. These conditions may be satisfied in two different ways:

Case 1: a real,

Y = % - iy, v' real positive;

Case 2:
a = -1ao . a real (e.g. positive),
Yy =7-i, 4" real positive.

Case 1 is termed the case of ""small attenuation", and Case 2 the case of "large
attenuation' (Ronchi et al, 1961).

The incident wave functions become, for small attenuation,

u//: = :p:u exp{-kxsinhv' sina) exp [ik(ycosh-y' sina + zcosa)| (1 =1, 2),

whereas for large attenuation

\(,: = wi o expl-kx coshy" sinhao) exp [ﬂ:(y sinhy" sinha + zcoshaoﬂ ,

e =1,2).

Let us call § the angle between the z-axis and the direction of propagation of the
phase, which is parallel to the (y, z) plane, Then, in Case 1

tans = tanacoshy' ,

and in Case 2 tans = ta.nhaosinh7" .
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The parameters of the evanescent wave, which have an immediate physical meaning,
are the angle § and the attenuation constant h, which equals ksinh+y' sina in Case 1
and kcosh«y" sinhao in Case 2. One can easily express a and %', or a, and 4", in

terms of § and h:
2
sina = \/éinzé -% cosz¢9
k

Case 1
sinhy' = 1
‘/ \k—z sin26 - cosz¢9
h
2
sinhae = \/(E— 00526 - sin26>
o k2
« Casge 2

coshy" = 1
i c0526 - 5—- sin26
V b

It is then easily seen that Case 1 is valid for
h/k < |tans)
and Case 2 for
h/k > [tans|.

In particular, Case 1 describes the condition of normal incidence & = = /2.
In the case of small attenuation, one has that

a©
by = Vg o0 nZ.m 3 Gosima) ™ o1y eee)
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It is then found that tue scattered field components are given by (2.16) with

@®

!//: - w:z oLz cosa ;Danl Hil)(kpsina) oIV inf , (X =1,2),
(2.89)
where
J (kasina) J! (ka sina)
fo1 =" m ©o e T 1" (ka stna)

The corresponding results for large attenuation are obtained by replacing a
with (-ho) and ¥' with ('y"+i1§r ) in (2.88) and (2.89). From the expressions of the
field components, it can be proven that in Case 2 the radiated field vanishes. This
is related to the fact that the wave number kcoshao in the direction of the cylinder
axis is larger than the wave number k in free space. Thus the scattering cross sec-
tion per unit length of the cylinder, which shows some sort of resonance for increas-
ing attenuation (Ronchi et al, 1961), vanishes for all k >k|tan 6|.
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LOW FREQUENCY APPROXIMATIII(I)NS FOR AN INFINITE CYLINDER

In the case of an infinite circular cylinder, the low frequency or long wave-
length limit (ka <<1) can be derived easily from the exact power series solution.
The exact solutions for normal incidence are given in Eqs. (2,35) and (2.36). As
particular cases, we shall consider the parallel (8 = 0) and perpendicular (8 = 7/2)
polarizations of the incident electric field.

The scattered field due to an incident wave with g’ parallel to the axis of a
perfectly conduocting circular cylinder is given by (2.37). Since ka <<1, we may
limit our considerations tc the first term of series (2.37); thus we have, in the far
fleld:

x
s P I—z_ Jo(ka) ei(kp- 4) 3.1)

which is independent of the azimuthal angle §. According to (2.61) and (2. 62), the
back scattering cross section per unit length is given by

, Jz(ka)
O ~ = (3.2)
E ok 2ka) + M(ka)
0 (o]
and since ka — O:
L2
op ¥ —— . (3.3)
k(log ka)

In the approximation (3.1), the total scattering cross section is also given by (3.2)
and (3.3):

)

o ~ |

. (3.4)

9&’total

This result easily follows from Eq. (2.71).
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In the case in which _!_!1 is parallel to the cylinder axis, the bistatic cross
section per unit length is given by

I ka) 23! (ka) 2
oy~ l-t (g). + (11), cosfp| . (3.5)
H "(ka) H, " (ka)
o 1
Two terms in the exact series solution must now be considered, since they are of the
same order in the limit ka—» 0, In particular, the back scattering cross section
corresponds to § = 7, and is given by:

2
97 4
Oy ™~ ik (ka) "~ . (3.6)

The total scattering cross section is obtained by integrating (3.5) over all values of
f (Panofsky and Phillips, 1956):

Y o~ 2 2%ka)’a . (3.7)

( total 4

°H

Lord Rayleigh was the first to use potential theory solutions to construct long
wavelength acoustic and electromagnetic approximations for both two-dimensional
and three-dimensional problems (Strutt, 1897). The advantages of Rayleigh's method
are not very evident in the case of a circular cylinder, because the exact solution is
well known. Rayleigh first determined the fields in the region a <p <A by using
potential theory approximations. He then introduced these intermediate fields in
Green's integral in order to derive the far field form. In particular, he showed that
the potential of a scatterer in a uniform field is the near field limit of the corre-
sponding scattering problem solution, and that this yields the first term of the far
field expansion.

Let o plane sound wave, whose velocity potential is given by

y= oirocosf (3.8)

be incident on a circular cylinder whose radius is small compared to the wavelength.
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By expanding in series of Bessel functions (Strutt, 1945; sections 341, 343):

e8P o 5 (o) - 24, (ko) com B+ . .+ 2-1)°T_(kpdoomn+... . (3.0)
For small ka,
wi = 1--‘1; k%a2 - tka con § +... (3.10)
p=a
! 1.2
%kr- p=‘= -gk'a-1koosd +... (3.11)

The vel. ity potential of the wave diverging from the cylindrical obstacle is given by
]
v" =8 D (kp)+8, D (kp)+... (3.12)

where So. Sl, ... are trigonometric functions,

2 2 22 4 4
D (kp) = (74-10‘&) 1_5—9— +... +.k_L - § -k_ﬂ__+__
o 21 22 2

) 22 . 42
dD_(kp)
D, (ke) = —5iicp)
22 33
I U I ' ko) [ko _Kp° ]
ko 1 22 + }+(y+log21>{2 22.4- +
33
B0 _3kp (3.13)
2 222.4

and ¥ = 0,577215... is Euler's constant.
Suppose that the material of the cylinder has density 6' and compressibility
m', and let 6 and m be the corresponding quantities for the surrounding medium.

All special cases can easily be obtained by giving appropriate values to ¢' and m'.
Inside the cylinder (Strutt, 1945; section 339):
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“g'_*]w s diavddtichlt

2,2
Yinside ~ 2o 11" 22 +

where k' is the internal value of the wave number.

8
woutalde Bo( +log 21) * B

equations:

-A k'2a2 = -k232+ 2B,
o o

_q_' 1 22) 1 g
( 1 ka+B( 21) ,
3k'22 31
Al 1-—=— 3 = -lk-—% ,
ks

2
g' k'a \ _ 1
0A1a<— 8 lka + 45

Solving the above equations, we get

- l _ - lkzaz m'-m
o— 2 6' 2 m'
_ 226'-6
Bl--ika ——6'+6

from the cylinder as

THE UNIVERSITY OF MICHIGAN

2,2
+APpy1-57%

Outside the cylinder (Strutt, 1945; section 341):

2,2
+—-%-— cos
2:4-8 (3.14)

(3.15)

The conditions to be satisfied at the surface of the cylinder lead to the following

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

We can now write the velocity potential of the scattered wave at a large distance
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v 8. 12,2 1lcp( )1/

The conditions m'-» @, 6'= o0 correspond to the case of a hard cylinder,

2 2
s _ .21 |'1 x 1 .
)~ - plr——-z 3z L2 + p]cou l:vt P A:] . (5.23)

5'-6
Te o ﬁ) . (3.22)

2m'

The case m' = 0 gives rise to an extreme case when the zero order in circular har-
monics becomes infinite and the first order term is relatively negligible. This
corresponds to a boundary condition of evanescence of (wi+ w’) in which wi =]
{often referred to as the soft cylinder boundary condition). Therefore:

G»f 10359 +1=0. (3.24)
For large kp:
1kp 1/2
o~ ) (3.25)
v+log g

The problem of electromagnetic wave scattering is analytically identical to

obstacles. One can identify wi and ws with I'.‘.z or Hz where Ez is the electro-
motive intensity parallel to 2 and I-Iz the magnetic force parallel to z. We also
replace & by the electrical conductivity ¢ and 1/m by u, the permeability, and &'
and 1/m' by ¢' and u', the values of o and 4 inside the cylinder. The expres-
sions for E_ and Hz are identical with (3. 22) and (3. 25).

Lamb (1924, section 304) has included a section on plane wave scattering by
a cylindrical obstacle in his book on hydrodynamics. He has made reference to
Rayleigh's contribution; the method used in Lamb's book is identical to Rayleigh's
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method, for the case of normal incidence of a plane sound wave scattered by a rigid
circular cylinder. He has also given the expression for the total acattering cross
section for the above case in the long wavelength 1imit, and this agrees with our
equation (3. 7).

The expressions for scattering oross section in cases of E and H-polarized
waves for arbitrary oylinders in two dimensions are derived by Van Bladel (1963),
He has applied the low frequency limit for the Green's function in the integral equa-
tion and his results for the special case of circular cylinders agree with equations
(3.3) and (3.7).

It is clear that the scattering cross sections depend markedly on the polari-
zation of the incident waves, and this has been discussed by Kerr (1951). As ka
increases, oE[ % 0. decreases monotonically and cH/cg. o, Oscillates, departing
markedly from the fourth power law (see Fig. 2-12). Some considerations on the
low-frequency total scatiering cross section for & cylinder with impedance boundary
conditions are developed by Lax and Feshbach (1948).
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HIGH FREQUENCY APPROXIMAT:XNS FOR AN INFINITE CYLINDER

In this chapter, we consider only the cases of cylindrical and plane waves at
normal incidence for both polarizations of the electric field @1 parallel or perpen-
diculur to the axis of the cylinder). The resuits obtained for a perfectly conducting
cylinder by means of geometrical and physical optics approximations, of the geo-
metrical theory of diffraction, and of asymptotic expansions of exact solutions are
presented in Sections 4.1, 4.2 and 4.3, respectively. The case of a oylinder with a
nonzero surface impedance is briefly examined in Section 4.4, and all results on
radar cross sections are collected in Section 4.5.

4.1 Geometrical and Physiocal Optics Approximations

Let us assume that the wavelength A of the incident radiation is very small
compared to the radius a of the cylinder. Under this assumption, the acattered
field in the illuminated region may be approximately determined by a simple ray-
tracing technique. Consider a plane incident wave propagating along the x-axis,
perpendicularly to the axis 2 of the cylinder; since the problem is essentially two-
dimensional, we may restrict our considerations to the azimuthal plane of Fig. 4-1,
A thin beam AA' of rays impinges on the cylinder surface at BB' where it is re-
flected and scattered in the angular range PP'; we want to determine amplitude and
phase of the scattered field y° at the point P(p,§), located at a large distance from
the cylinder (p —> o, ﬁoﬂ— §). The energy per unit time carried by the incident
beam is proportional to

2 2
o' ann = v a6OB ea? |

whereas the energy that the scattered wave carries through PP' per unit time is
proportional to

%, ;| 2@P) = |v%. |2 20 BB ;
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FIG. 4-1: GEOMETRICAL OPTICS APPROXIMATION
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since no absorption occurs at BB', these two expressions must be equal by conser-

vation of energy, that is

!'// (P.¢)| = |W I sing

The phase of the scattered wave is casily determined by observing that the differenceg
between the geometrical paths AOOP and ABP of Fig. 4-1 is given by 2a sin'g .
Thus

argws(p,ﬁ) = k(p-ZaBing)*'Qo ,

where Q is a constant angle which depends on the boundary conditions. For an
acoustically hard cylinder (H paraliel to axis of conducting cylinder ) ¢ =0,
while Qo = 180° for a soft cylinder (E parailel to axis of conducting cvlinder)
Therefore, a plane electromagnetic wave normally incident on a perfectly conducting]
cylinder with

produces a geometrical optics far scattered field {p — oo, ¢o~ P):

2

k(o - 2a i
) e111:(p asin ’ @

8 = {2
(Ez)g.o. B FY sin’y

whereas a plane electromagnetic wave with the other polarization, i.e.

H ='i\" €/u elkx ,

produces a geometrical optics far scattered field

——.— 1k(p 2asing)
= \feT_\F_ . (4.2)
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In particular, the geometrical optics back scattered fields are:

€D o = - e (4.1a)
0

z 'g.o0.

for E' parallel to the axis, and

(H:.s.)g‘o = !eiu"J_z_T;eik(p"za) (4.2&)

for gi parallel to the axis. In Section 4.3 it is shown that the geometrical optics
fields given by (4.1) and (4.2) are the leading terms of asymptotic expansions of the
exact fields,

The physical optics approximation represents a refinement of geometrical
optics. It is recslled that the physical optics approximation method consists of two
steps. Firstly one obtains the total electromagnetic field on the illuminated portion
of the surface of the scatterer by assuming that at every peint the incident field is
reflected as though an infinite plane wave were incident on the infinite tangent plane,
and the field on the shadow portion of the scatterer is assumed to be zero. Then,
an integration over the illuminated surface of the body gives the scattered field.

The physical optics current density J on the surface of a perfectly conduct-
ing cylinder has been given by Riblet (1952) for both polarizations of the incident
plane wave. If

then from (2. 41):

_ A A _ A $§ ikzcosf j.d 37 ,
d= Jz(¢)iz~1221-l; p=a— -iz2 elu sin e , for 5 < ¢<—2
(4.3)

'\IO' for|¢l<gn
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whereas if

l»l1 = 'i\z e/u eﬁm )

then from (2. 42):

ika cos T 3
p=a= -32\le/ue , for 2<¢< 5

J= J¢(¢)3 ~ -3211‘2

(4.4)

~0 , for !ﬁ|<§

If the expressions (4.3) and (4. 4) are substituted into formulas (2.51) and (2.50) re-
spectively and an approximate evaluation of the integrals is carried out, the physicall
optics approximations to the scattered fields E: and H: are obtained.

Riblet (1952) considered (4.3) and (4.4) as the leading terms of asymptotic
expansions of the current in inverse powers of ka, By substitution into Maxwell's
equations and imposition of the boundary conditions, he was able to determine a
first order correction to (4.3) and (4.4). The absolute value of the ratio between
the correction terms and the leading term is equal to Ee’_ka sin3(¢/ 2) "1 These
corrected physical optics currents represent an improvement with respect to the
approximations (4.3) and (4.4) only in the angular range 27 /3 <@ < 4= /3,

Finally, we shall give a brief account of the Luneberg-Kline method (see,
for example, Keller et al, 1956) for obtaining the high frequency expansion of the
field reflected by an arbitrary obstacle, and shall state the explicit results for a
circular cylinder. Assume that the wave function y, (V2+ kz)lp = 0, has an
asymptotic expansion of the form

(o}
v (x,y,2)
¥~ eu@ E : —n—-—n— , as koo . (4.5)
n=0 (ik)

Inserting (4.5) into the wave equation and equating to zero the coefficient of each
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power of k, we find:
2
(v =1, (4.6)

2w v+ v VPh = -y, 4.7

n=0,1,...; v, =0),

-1

The eiconal equation (4, 6) determines the phase function ¢, whereas the vn's are
obtained from (4.7) by iteration. If s denotes the arc length along an optical ray
(i.e. a curve orthogonal to the wavefronts Q = constant}, then the solution of (4.7)
can be written in the form:

1/2

- 1 [ow)]'/? [G(ﬂ] 2R, wa, @8

0

vn(s) = vn(so) [G(s )

where G(s) denotes the Gaussian curvature or, in two dimensions, the ordinary
curvature, of the wavefront @ = constant at the point 8 on a ray. In particular, it
is easily seen that Yo varies along a ray as the inverse of the square root of the
cross sectional area of a narrow tube of rays, as was previously found by energy
conservation.

This method has been applied by Keller et al (1956) to a variety of problems,
among which is the reflection of a plane wave by a large circular cylinder. For a
soft cylinder (51/1 = 0) and wi = eikx, the reflected field at a point P(p, §) is
(see Fig. 4-1); P72
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1la _9 3 . To
U1 ren.™ 3 | 25°10 3 [“‘ 8- asin ):l

w3nn

Z"Mnéem’m—> (a/2) (sin-) i (4.9)
n-O h=0

where the angle po is shown in Fig. 4-1.
The coefficients & m satisfy the following recursion relations for h # 0:

-1
a. =h ﬁ2h+u+2n-3)(6h-41-23‘1)%.1,1,11-1+

+(2h-40-20+5M2h-40-20+3)ay |, o o+

+[2ab-Db-2¢-m)-6]a , , o+

+1201-bN2h-4-20+3)a o, o+
+9(2n-5K1-2h)a, , , . +9(2h-5)2h-Da, o, n-l} ,  (4.10)

while for h = 0 we have:

= _Z ahm s aooo = -2 ., (4.11)
h=1

In particular, the first few terms of the series (4,9) are:
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sn° ' siny 2
+(§“;f< 6¢ -93mf22>+(§;)3 stmz-pf-m)] +} .
”n'éc" (4.12)

In a plane z = constant, the family of wavefronts is a family of parallel curves with
the optical rays as common normals; these rays do in general possess an envelope
which is called the caustic of the wavefronts; the distance s which appears in (4.9)
and (4.12) is measured along a ray from the caustic to the observation point P(p, §).
With reference to Fig. 4-1, we have that

g

= a_. o
s—BP+zsin2 . (4.13)

In particular, in the far field (p — o, ¢° ~ #):

s o\;;:o-gsin‘Q

5 5 (4.14)

so that formula (4.12) becomes:

s " I’ ik(p-Zasing)
(wl)reﬂ.N A\’;; tsin2 e ., (p>w, (4.15)

where (Keller et al, 1956):
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Al ~ 1+—2 > 34';72 - 7218] + 38‘157!) ... (4. 158)
(16ka) gin 2 sin 2 sin 2

..?

and, in particular, A ~ -1 as ka becomes very large.

fkx

For a hard cylinder (8\02/ 8pl = 0) and w; =@ , the reflectad field at a
p=a

» point Plp, §) is still given by (4.9) and (4.10), but (4.11) must be replaced with the
following (Keller et al, 1956):

fotn T~ i_l R N L T

(4.16)
. aooo =+2 .
Explioitly, the first few terms of the expansion are:
5 o~ ‘ "o]x
(!02)refl 2 805 exp ﬂt(s--z-asin?
i 8 3 a 1
Elﬁka[ Pt 7+2s<3‘ ﬂ)*
81113-2 sin_g sinz'-2
2 2 2
g \ 3
a8 o /a _ 270
+(2s> Qasin ) To/ + K28> (15 15 8in 2) +
) (4.17)

where 8 is given by (4.13) and ¢o is indicated in Fig. 4-1. In the far field,
approximation (4.14) applies and result (4. 17) becomes:

1k(p-29,sing)

B)mﬂ.‘v B E‘;smz e , (=—» o), (4.18)

U
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where (Keller et al, 1956):

B| ~1 +—1 2(34;—71- 66:2!+ 30:9£ +... (4. 18a)
(16ka)” \sin 2 sin 2 sin 2

and, in particular, B~ 1 as ka becomes very large.

The far fields (4.15) and (4. 18) include the terms O(k-z) in the asymptotic
expansion (4.5) and they coincide to O(k™!) with the results that Imai (1954) ob-
tained by saddle-point evaluation of the SD in the exact expressions (2. 45) and
(2.46), respectively. Imai did not carry hBis computations through O(k-z). The
leading terms in (4.15) and (4. 18) are the geometrical optics fields (4.1) and (4.2),
respectively. Keller et al (1956) plotted the amplitude of the back scattered fields
(¢ = 7) vs. ka, for both polarizations and for 1<ka <4, and the amplitude of the
far scattered field vs. §, for both polarizations and for ka =4, 40 and infinity;
their diagrams are based on formulas (4. 15) and (4, 18).

The Luneberg-Kline method does not take into account the diffraction effects,
but considers only the reflected part of the scattered field; the remaining part is the|
so-called creeping wave contribution, which is described in the following sections.

4,2 Geometrical Theory of Diffraction
The geometrical optics approximation does not account for the presence of

nonzero scattered fields in the region of geometrical shadow, and often represents
an insufficiently accurate approximaticn in the illuminated region. A better approx-
imation is represented by the so-called geometrical theory of diffraction of Keller,
which is an cxtension of geometrical optics. For a description of this theory, the
reader is referred to a paper by Keller (1956), in which the extension of the laws of
optics is presented in two equivalent forms. In the first form, the different situa-
tions in which diffracted rays are produced and the different kinds of diffracted rays
which occur in each case are explicitly described. The second formulation is based

on an extension of Fermat's principle. The equivalence of the two formulations
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follows from considerations of the calculus of variations. Keller's theory assigns
a field value, which includes a phase, an amplitude and, in the electromagnetic
case, a polarization to each point on a ray. The total field at a point is postulated
to be the sum of the fields on all rays which pass through the point.

Keller's theory has been developed for both scalar and vector fields and for
objects of various shape and type (e.g., acoustically hard and soft bodies, perfeot
conductors, dielecotrics); the results depend upon the nature of the object in an
essential way. For example, a very detailed application to the diffraction of a sca-
lar or vector wave by a smooth convex opaque object of any shape has been made by
Levy and Keller (1959),

From its similarity to geometrical optics, Keller's method can be expected
to yield good results when the wavelength is small compared to the cbstacle dimen-
sions. However, it has been found that in moat cases the results are useful even
for wavelengths as large as the relevant dimensions of the scatterer. An important
advantage of the method is that it does not depend on separation of variables or any
similar procedure, and it is therefore especially useful for shapes more compli-
cated than a circular cylinder. In fact, in the case of a cirocular cylinder, the solu-
tion obtained by the geometrical theory of diffraction coincides with the leading
terms in the asymptotic expansion of the exaot solution for large ka {Levy and
Keller, 1959).

If R is the distance between the observation point (p, §, z) located off the
cylinder surface (p >a) and a line source parallel to the cylinder axis and located
at (p=po>a. $ = 0) and if

T
i1 ]2 4
Y o= a\7m © (4.19)

is the incident field, then the scattered fleld y° may be written as

wBN ws + '//s

g.0 d ’ (4.20)
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where w; o is the geometrical optics field (which, in particular, is zero in the

geometrical shadow), and V/; is the diffracted field which is given by (Levy and
Keller, 1959)

-1/4
8 - -1/2[, 2_ 2 2 2
o = e [ a2 ot x

X exp {ﬂt [(pz- 32)1/2 + (pi- 8.2)1/2] + %’-} X

. Z o? g XD [(ika -8 )¢]+exp[(ika s N2r- ﬂ]
1- expEza'(ika aa;_]

X exp E(ika-aal) arc cos% + arc cos p_a)] . (4.21)
()

The diffraction coefficients D! and the decay exponents «a 4 are determined by com-

paring (4,21) with the leading terms of the asymptotic expansions for exact 3olutions

-1

o, = k-, (4.22)
1/2
i; oy l/4 (2Nka)
() " (4.23)
31/
V'—'Vl

The expressions on the right-hand sides of Equations (4.22) and (4. 23) are defined
below, in Section 4.3. Values of a, and D! based on these equations, and the
operator Q are given in Table I for the three types of boundary conditions consid-
ered in this report (Levy and Keller, 1959). In this table, A(q) is the special
representation for the Airy integral which has been employed by Keller and Franz,
and which is related to the integral Ai of Miller (1946} by the equation:

109



N il

Z
<
- xp [Cow] £+ [ “_“* 09 9 oy =¢ d
§A£+|lv Aw byy b).v Z {u — 9= sA§+
w d 1- B ¢ e/t Aa_vw y m\%s_ W_ o)v e
=y
=
= | & ] (), o= oy o= [
(o) . m? mﬁ
e
o)
m m hﬂv u m NU ﬂnQ«%
o3 (LY 2 0= (bv 0=
“ M\%ﬁv 9 h
>
ol
z p—— m— —
- = (XPS b (=— repur
N\% IT M\ﬁ A Vm od
m x%
]
=
13149Vl

110




THE UNIVERSITY OF MICHIGAN
7133-3-T

®
Alg) = coa(ts- qt)dt = 3'1/3wAi(-3-1/3 q). (4.24)
0

For a scatterer of general shape, the diffracted field is given by formulas of
which (4.21) is a particular case (see, for example, formula (11) of part one in the
paper by Levy and Keller (1959)), These formulas involve the incident field, vari-
ous geometrical quantities, the diffraction coefficients Dl and the decay exponents
a,. If we assume that the leading terms in D! and a P depend only upon the radius
of curvature of the scatterer's surface in the normal plane tangent to the optical ray

and on no other geometrical property of the scatterer, then D, and @, can be

determined from the field diffracted by any object of simple sl:ape, e.lg. a circular
cylinder, Thus, the geometrical theory of diffraction is of no help in determining
the high frequency behavior of the field scattered by a circulary cylinder; on the
contrary, it is the knowledge of this behavior (achieved by asymptotic expansion of
the exact solution) which allows us to determine in the easiest way the geometrically]
diffracted field for any smooth convex opaque object, Of course, small correction
terms to D! and a, do involve other geometrical properties of the scattering sur-
face, aad in order to determine these additionai terms it is necessary to consider
the particular shape of the scatterer.

If the line source is removed to infinity and we take into account only the

first term (£ =0) in the series (4.21), and if the electric field of the incident plane

wave is _Igi = i\z eikx’ then the far back scattered field is giver. by (Levy and Keller,
1959):
b.s. ’_g._ ik(p ~ 2a)
Ez ~ % e J(ka) , (4.25)
where
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-1/3

. _ -2
Jea) = 1-42% 26743 [anq)] o)™ exp qu;G (ko) /% s1n 7| x

X exp [% + ika(1r+2)+i1rq86 1/3 (ka) cos 3] (4.26)

q; = 3,372134 is the smallest zero of the Airy function A(g), and Ai(q")) =-1.059053,
The first term on the right-hand side of (4.26) represents the geometrical optics
contribution, in agreement with (4.1a). The second term in (4. 26) represents the
diffracted field, and may be neglected to the level of accuracy of formula (4. 25).
Thus |¥(ka)] = 1, as is shown by the broken line in Fig. 4-2.

For the other polarization (rigid cylinder), such that l{i = 'i; e/u eikx, the
far back scattered field is approximately given by (Levy and Keller, 1959):

b.8s. —a _ik(p - 2a)
H' ™~ \le/u \j;;e H(ka) , (4.27)

where
H(ka) = 1+21rs/26 3 IE&( )] (ka) 1/6 exp[rq 6 (ka) 3])(

% exp [%+ika(1r+2)+i1rq06 1/3 (1ea)!/3 cos 3] (4.28)

q,= 1.469354 is the emallest zero of the derivative A'(q) of the Airy function, and
A(qo) = 1.6680. The first term in (4.28) represents the geometrical optics contri-
bution, in agreement with (4.2a), whereas the second term represents the diffracteq
field contribution. The quantity |H(ka)] is plotted in Fig. 4-3.

If the geometrical optics portion of (4.25) and (4.27) is replaced by the
asymptotic expansion of the reflected field in inverse powers of ka (Keller, Lewis
and Seckler, 1956), then higher order corrections to the diffracted field must also
be introduced. Tne most important of these corrections deals with the decay expo-

nent o

'L and for cylinder and sphere it was found from an analysis of the asymptotiq
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FIG. 4-2: AMPLITUDE OF FAR BACK SCATTERED FIELD FOR A SOFT
CYLINDER, NORMALIZED TO THE GEOMETRICAL OPTICS

VALUE yaf2p; THE DIFFRACTED RAYS HAVE A NEGLIGIBLE
EFFECT (Levy and Keller, 1959)
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FIG. 4-3: AMPLITUDE OF FAR BACK SCATTERED FIELD FOR A RIGID
CYLINDER, NORMALIZED TO THE GEOMETRICAL OPTICS
VALUE ¢a72p . (Levy and Keller, 1959),
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expansion of the exact solution by Franz (1954). With these modifications, the
quantities J(ka) and H(ka) in Eqs. (4.25) and (4.27) are replaced by J(ka) and H(ka),
respectively, where (Levy and Keller, 1959):

51 127
J(ka) = 1+ + -
16k 51 9(ka)?
1
-2 exp [ir (v +2ka+-—)]
3/2 -4/31, ., -1/6 L 2 12/)
~ar 467 P [avq)]  (ka) Sedmy W
Hka) = 1Ll _ 383
16ka 512(ka)2
-2 exp +2ka+—
3/2 -1/3 -1 -1/6 I: £1
+20°1%67 3¢ At )] ()™ ey @30
with:
42
ka 1
"2=k’+(?) qo ) % 5o (4.31)
2
1/3 11’ 1/3 -iZ q\
3 3/ 1 %
= ke (2 (&) . <_1°%+ ) - (4.32)

The quantities |J(ka)| and |H(ka)| are plotted in Figs. 4-2 and 4-3, respectively,

4.3 Asymptotic Expansions of Exact Solutions
In this section, we shall review the main results obtained by Franz and his

collaborators (Franz and Deppermann, 1952; Franz, 1954; Franz and Galle, 1955),
Imai (1954), Wetzel (1957), and by the school of Fock (Fock, 1945, 1946; Goriainov,
1958). It is obviously impossible ., give an account of the many papers written on
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high frequency scattering by circular cylinders, and therefore only those works whic
contain new important information are explicitly mentioned, whereas many others
simply listed in the bibliography at the end of this report. We shall first consider t
case of line sources parallel to the cylinder axis, and then discuss in some detail the
case of plane waves at normal incidence, for both polarizations.

Let us consider a line source located at {p =Py § = 0) parallel to the axis of
the cylinder, and such that

i_ 1 ..(1)

where, as usual, R is the distance of the observation point from the line source.
Then the total field ¢ must satisfy the equation

(P = 7 ls0-p 6, >a)

the boundary conditions at p =a and the radiation condition (2.19) at infinity. One
has that (see Eq. (2.79) where, however, the source it at f = 180°);

D
QJ (ka)
i z : (1) (1)
Y == € I}(kp) - g (kp:lH (kp Jcosng , (p >a), (4.34)
4 c5 o n <) QH;I)(ka) n <) n >

where p < and P, are, respectively, the larger and smaller of p and po, and the
operator {2 is given in Table I of Section 4 2 for the three types of boundary condi-

tions considered. The sum (4.34) may be written as

JL8-m B )

X
sin(7v) (1)
Cl QH” (ka)

1
V=3

(1) W
x[om ka5 (0 ) - 27, ka B o), (4.35)
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where the contour C, encircles the entire real axis in the clockwise direction, or

1
also, replacing v with -y on that part of C. for which Imv<0, as

1

con [p- )] H Nipy)

sin(ry) o'
v

(ka)

(1) « 1)
X Emv (ka) J (ko ) - 23, (Ka)H,

(ko <)'_]du . (4.36)

where the contour 02 is in the upper half-plane, just above the real axis and running

parallel to it. Both results (4.35) and (4.36) are as exact as the series solution
(4.34).
The contour integral (4.36) has been asymptotically evaluated by Franz (1954),

If the observation point (g, #) lies in the geometrical shadow, the contour 02 can be

closed in the upper half-plane and the integral evaluated by computing the residues at

the zeros v, of QH:I)(ka):

Yo . (4.37)

(2)
4 7 sin(wvl) L% QHS)(ka) v, "oy,
vy,

This residue series converges rapidly in the shadow region (source and observation
point geometrically invisible to each other) and very slowly in the illuminated region.
Therefore, if the field point belongs to the illuminated region, it is convenient to
split the integral (4. 36) into the sum of two integrals by means of the relation

cos E/(¢ - wﬂ = V" cos(vf) - lewﬁ sin(vr) , (4.38)

and then convert one of the two integrals into a residue series, obtaining (Franz,
1954):
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(2)
Z cos{v,f) ftvx| QH“(ka)

(1)
a!n(vlt) ] QHLI)(ka)

v
oy £ l

vsvl

(1)
8

(1)( Ezu(l)(ka)u(z)(kpg QH(z)(ka)H(l)(kpj dv . (4,39)
QB ’(ka)

+

Cz

The residue series in (4.39) converges cverywhere except in the forward direction

§ = x; however, (4.39) is of interest only in the illuminated region, since in the
shadow we may profitably use the simpler representation (4.37). The contour inte-
gral in (4.39) may be asymptotically evaluated by saddle point technique, and repre-
sents the sum of the primary field and the reflected part of the scattered field, where-
as the residue series represents the creeping wave contribution to the scattered field,
The quantities q, and

QB ca)

2 oV
>y CH(ka)
V=V!

are given by the second and third columns of Table I in Section 4.2, and v, is re-
lated to q, by:

v ~ka+(ka>/3 i q, *+... (4.40)

In order to compute ¥ from (4.37) or (4.39), it is necessary to know the positions of
source and field point, so that the appropriate asymptotic expansions of the Hankel
[functions of arguments kp and kpo may be used. For example, if both line source
ﬁ observation point are very far from the cylinder (po—'; ®, p—>0), then (4.37)

omes:
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exp ik[(_p 1/2‘1-(p exp(iv‘¢)+expEvl(21r-ﬂ
7 _ X
91k (p - a )(p - ad) ]1 4 1 exp(21rlvl)
QH 2 ka)
X exp [w arccos 2 + arc cos-)] ) (4.41)
p avm{ (ke)

V=V£

In the remaining part of this section we consider in some detail the case of a
plane wave incident perpendicularly to the axis of the cylinder. The first rigorous
treatment of this problem in the high frequency region is due to Franz and Depper-
mann (1952), who introduced the concept of creeping waves; they based their deriva-
tions on Maue's integral equation (1949). The same problem has been treated by
Ivaai (1954) in a different way; he starts from the solution for the scattered field in
the form of an infinite series and transforms it into coantour integrals (see formulas
(2.45) and (2.46)), which he evaluates by the saddle point method and the residue
theorem obtaining the scattered field at a large distanlc);e from the cylinder. Specific-
ally, a saddle point evaluation of the two iutegrals 5 in formulas (2. 45) an% (2.46)
gives the reflected part of the scattered field, whereas the other integrals are
transformed into residue series whose terms correspond to the creeping wavg:s of
Franz and Deppermann. The results of Imai are not given here, because more ac-
curate approximations were derived by Franz and Galle (1955)%,

The convergence of the asymptotic series obtained by Franz and Galle (1955)
is rather poor over certain regions of the azimuthal angle §. This inconvenience

*Imai (1954) pointed out some errors in the derivations of Franz and Deppermann
(1952); for example, he showed that their contributions due to reflections from the
shadow side do not exist. In turn, Franz (1954) remarked that the numerical values
which appear in Imai's formulas (7.8), (7.18), (7.22) and (8.16) are incorrect.
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been avoided by Goriainov (1958), who has derived asymptotic expansions for both
surface current and far field and for the whole range 0 < # <27 by applying a tech-
ue developed by Fock (1945, 1946)*. Goriainov's results for surface current den-
ity and far field differ by at most a few percent from the exact results for ka =5

, of course, become more accurate as ka increases.
In the following, besides the azimuth §, 0§ <27, we shall introduce the
jangle §, -x <{ <7, defined as

¢ =4, for p<r ,

= §-27, for § >x .
Also, we shall make systematic 1se of the symbol m, defined as:
m = (ka/2)1/ 3,

Let us consider a plane electromagnetic wave incident in the direction of the
Inegative x-axis, such that

i_~a -{kx
z° ’ H = iy €/u e . (4.42)
The current density on the illuminated portion of the surface (p = a, |[t]|< 7/2) is
lgiven by (Franz and Galle, 1955):

3

For a history of what is presently known as the Fock method see the first volume by

Logan (1959), in which a detailed discussion of the notations employed by various
uthors is also given. A brief exposition of Fock's theory has been given by Goodrich|

1959), and an excellent treatment of high frequency diffraction methods in general
ay be found, for example, in a paper by Logan and Yee (1962).
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2
J -(H;+H;) o~ 2\I'€]T;cos¢e'"‘“°°{1+ 1 T+ “3’“‘3% +oo. )+
z pa 2kacos’p  2(kacos"p)

+1\le/u e_i%rm'1 Znn [r( 3 gﬂ ”2& J (4.43)
n

1- xp(l21rv ) '
'where
x T 2 3
i= -i= a a
3 3 -1"n 1 n
v~ hkate me -e "m gy -ana \1-70 )t
i X
3_-5__1 281 4
+e m 12600 <290n- 360 an +> . (4.44)
i"-r a -l"—r 59«1!2 223a
b~ A;T(l )[1” 3“‘-2?3” Pm 5500 + - 2 (37' ) :I
n “% 3150(ka)

(4.45)

and the an's (n=1,2,...) are the zeros of the Airy integral in Miller's notation

(with a change in sign):
Ai(-an) =0. (4.46)

The first few values of @ and Ai'(-an) are given in Table II (Logan and Yee, 1962).
The first group of terms in (4.43) represents the optics contribution to the surface
current, and the first term itself is the geometrical optics current; this development
is numerically useful only if k30083¢ >>1. The summation over n represents the

creeping wave contribution to the surface field.
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TABLE 11
LI P
| n a Ay an)
1 2.338107410459'767 +0. 70121 08227 20691
2 4.08794 94441 30971 -0.8031113696 54864
3 5,.52055 98280 95551 +0. 86520 40258 94152
4 6,7867080900 71759 -0.9108507370 49602
5 7.94413 35871 20853 +0, 94733 57054 41568

The current density on the shadowed portion of the surface (p =a,
|p- 7] <x/2) is given by (Franz and Galle, 1955):

n
- 1

Jz= (H;+H;)p=a~ ije/u e 3m X

1 “Mm"v ) (4. 47)

5, exo i, (8- 2] ore [, (2 -4]

where v and Dn are given by (4.44) and (4.45). The creeping wave series (4.47)
is no longer useful for computational purposes when one approaches the shadow boun-
dary ¢ = ¥ n/2.

An alternative representation of the surface current, which is especially use-
ful in those angular regions where (4,43) and (4,47) fail to converge rapidly has
been derived by Goriainov (1958), An expansion which may be profitably employed
in the transition region about the shadow boundary

|l 2 Igwt, (4.48)

is the following:
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i -1 zm' (0) tkan, () . ikan,
o = (Hy+H3) .~ iJe/u m E (mn,)e +f '(mn,)e ] ,
p "Bp=a st 1 [

(4,49)
where
_ T - 3n
nl = ¢-§+21rl, , =?-¢+27rl . (4.50)
The Fock functiou f(o)(E) is a particular case of the more general function f(l)(E),

defined as (see, for example, Logan (1959), vol. 1):

! igt
) o _ i e ]
78 = 7 “’1“)t dt , (o <8<, (4.51)
,'!
where
w, (x) = Vo [Bi(x)f iAi(x_Z] (4.52)
2

with Ai and Bi Airy integrals in Miller's notation (1946), and I" is a contour which
starts at infinity in the sector 7/3 <argt <=, passes between the origin and the

pole of the integrand nearest the origin, and then ends at infinity in the sector

(2

-1/3 <argt<w/3. For £ >0, one can write { )(E) as a residue series:

5w
) ( )1 £ i?
-i(2+72) < a a e
). _ 6 n n
() =e Z Aa) © . (4.53)
n n
Values of f(l)(E) are given by Logan (1959, vol. 2) for £ =-1(1)5 and

£ =0.5(0.1)4.0."

)
The values tabulated by Logan correspond to our Eq. (4.53); in the headings of his

tables, a factor (-1)" is missing.
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If, in the first approximation, we limit ourselves to the first term (£ =0) in

he series (4.49), we find that after some manipulation (see Goriainov, 1958) we may

'write:
| tad _
o, 1 €/u m™! Ef(o)(mno)e ©+ F(mcos(w -¢)) olkacos( m:] ,
ogp<n/2), (4.54)
where
3
&
Fe) = £ e 3 (4.55)

Formula (4.54) provides a smooth transition between (4.49) and the geometrical op-

tics result.
At large distances from the cylinder surface (p >>a), the incide . wave (4.42

produces the scattered field (Franz and Galle, 1955):

ik(p - 2acoss) (?kasin'g) 1
Es ~ - —a'coss e 1+i - 3 +
2 2p 2 8kp £
16ka cos 9
i 15 33 5
+ + - + +.o.o.]+
2ka cos3'§ 512(ka cos _§)2 32(ka cosz-‘.g)2 4(ka cos3 %)2 -]
-1/2 exp iv (7r+§]+ exp |iv (7 - gj
+ m(27kp) exp E (kp jl Z C - exp(127v )
4”121 -1
X (1+i 8ko +... . (4.56)
where
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T -1-7-r 302

-2 i< a
. 3_-2_ ¢ 3 -4__n
Ca ™ E‘“"'“nﬂ [“e m - pte mo Yoot

1 28la
+ — ( ) ] (4.57)
3150(ka)

and v is given by (4.44)*. The first group of terms in (4.56) represents the optics
contribution to the far field, and the first term itself is the geometrical optics field;

this development is numerically useful only if kacoss(gl 2)>>1. The summation over
n represents the creeping wave contribution to the far scattered field, and is prac-
tically applicable only for |#- =] > m ! . In the far field (p — o) and in the back

scattering direction (§ =0), equation (4.56) becomes (see (2.67), in which f(§, 0) is

now PE):
iko-i%
ES ~ P \/——2- ekp K (4.58)
z " "E mkp ' :
where
v 571
i= -i2ka i-= C
P~y et (e 2y Nedme O3 e
512(ka) = sin{7v)
(4.59)

In the far field (p—> ) and in the angular region |§- 7| << m'l, the domi-
nant contribution to the scattered field may be written in the form (4.58) with P
given by (Goriainov, 1958):

E

L3 -
The quantity C, of Franz and Galle (1955), given in their formula (117‘,?), contains
an error: the factor 3x6 in the denominator must be replaced by 6
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PE~ ) sinEkjl(:-Wﬂ imyT l’:p (m(¢'7’)) eika(¢-7r)+p(m(”~¢)> eika(w-ﬁ)] '

{4,60)
where
pE) = So=g + -\71- exp(igt)'—v% dt , (4.61)
r
with w, given by (4.52) and
4 (® w (t)
_ 1 .1/2 4
v(g) = Zﬁg e explift) — '(t) (4.62)
-0

The reflection coefficient function p(f) is tabulated in Logan (1959, vol. 2) for

£ =-1,60(0.01)1.60, and for § =-3.0(0.1)2.0,

In the particular case of forward scattering (f =7), a more refined approxi-
mation has been derived by Wu (1956); the forward scattered field is still given by
(4.58) with

1 1, 281
Pp ~-ka-Mm-35 Mym + 16 ( 2) - 7265 (29Mo+ M >
1 73769 -7 |
R TTTEI (7361M + 1 M4>m . (4.63)
where
i'%r iﬂ
M_=1.25507437e ° M, =0.53225036 ¢ °
|
M, = 0.0935216 , M, =0.7727%3 e °
M, =1.0992¢ ° . (4.64)
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It is easily seen that for ¢ = 7, formula (4,60) coincides with the first two terms of
the expansion (4.63). The total scattering cross section follows immeuiately from
(4.63) and from the forward scattering theorem (2.69); the explicit result is given in
Section 4.5.

The previous treatment from (4.42) to (4.64) contains the most relevant re-
sults for the case of E-polarization. We shall now investigate the case of H-polari-
zation (hard cylinder), namely, of a plane electromagnetic wave incident in the direc-
tion of the negative x-axis, such that

i ik i_ 4 -ikx
ie

E = -’fy ule e, H = ; (4.65)

(notice that all results from (4.65) to the end of this section are normalized with
respect to the incident magnetic field).

The current density on the illuminated portion of the surface (p = a,
le]< 7/2) is given by (Franz and Galle, 1955):

. . 2. ]
J¢=-(H;+HS) o _zeikacosﬁ[_ i = - 1+ 3sin”P +'“_l+
2ka cos” f

Z pa (kacossjb)2
- (37 - (3=
exp Ev - - §] + exp Ev 5 t !]
+Z-D D.Q2 ) _ n(2 ), (4.66)
= n 1—exp(i21rvn)

T 1 4
i e‘ 30 L (5.2, 61‘Bn+ 2818, s (4.67)
2000 \"n 2" 63 2268 ) ''° :
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i~ / B ~i<
= 1 3 <2, 1 n 3 -4 1 -4 -1 61 2
D@——-———E_e m o a— +8 m -—<_3B +B, __B>+
n BnAi(-ﬁn) Kl 0312, 30 200 n n 63 n

&
+1(1 3 _353+n>+:]
(ka)? \100g 50080 1875 308

(4. 68)

and the Bn's (n =1,2,...) are the zeros of the derivative of the Airy integral in
Miller's notation (with a change in sign):

Ai'(—Bn) =0. (4.69)

The first few values of Bn and Ai(-Bn) are given in Table III (Logan and Yee, 1962).

TABLE III
o 8 ﬂL AL(-B )
1 1,01879 29716 47471 +0.53565 66560 15700
2 3.24819 75821 79837 -0. 41901 54780 32564
3 4.82C09 92111 78736 +0.38040 64686 28153
4 6.16330 73556 39487 ~0.35790 79437 12292
5 7.37217 72550 47770 +0,34230 12444 11624

The first group of terms in (4, 66) represents the optics contribution to the surface
current, and the first term itself is the geometrical optics current; this development
is numerically useful only if kacossﬁ >>1,. The summation over n represents the
creeping wave contribution to the surface field.

The current density on the shadowed portion of the surface (p = a,
|¢- 7| <7/2) is given by (Franz and Galle, 1955):

JIg = S AEY) A - ZI‘) exp[ﬁ“(ﬁ_ggl °*P i;n(%!'@

z z'p=a n 1 -exp(121r1‘/n) !

(4.70)
n
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where ;}n and -Dn are given by (4,67) and (4.68). The creeping wave series (4. 70) is
no longer useful for computational purposes when one approachus the shadow boun-
dary ¢ =1 n/2.

An alternative representation of the surface current, which is especially use-
ful in those angular regions where (4.66) and (4. 70) fail tv converge rapidly, has beenj
derived by Goriainov (1958). An expansion which may be profitably employed in the
transition region about the shadow boundary

||§l—§!$m‘1 , (4.71)
is the following:
- ikan ikar-q
s ;E(m(mn‘)e +g0mny)e ‘] . (4.72)

where n, and nl are given by equations (4.50). The Fock function g( )(E) is a par-
@)

ticular case of the more general function g '(£), defined as (see, for example,

Logan (1959), vol. 1):
! iEt

g“’(s) = L 2 __ t dt , (-0 <E<+0) , (4,73)

'Ed w! (t)
r

where wi (t) is the derivative of w (t) given by (4.52), and " is the contour pre-
viously defined for (4,51). For § >0, one can write g( )(E) as a residue series:

Sn
-1-1 1%

-t Z B) £8 e
(). _ ] 6 E n n (4.74)

Values of gu)(E) are tabulated by Logan (1959, vol. 2) for £ = -5(1)5 and

£ =0.5(0.18.0.%

* The values tabulated by Logan correspond to our equation (4.74); in the headings of
the tables, a factor (~1) is missing.
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If, in the first approximation, wo limit ourselves to the first term (¢ = 0) in
lthe series (4.72), we find that after some manipulation (see Goriainov, 1958) we may

write :
ikan
Iy~ -g(o)(mﬁo)e °.¢ (mcos(w - ) elkacos(- P ocpcr/a, (4.7
where
3
&
G(E) = g(o)(t‘) e 3 . (4.76)

Formula (4. 75) provides a smooth transition between (4. 72) and the geometrical op-
tics result,

At large distances from the cylinder surface (p >>a), the incident wave

(4. 65) produces the scattered field (Franz and Galle, 1955):

ik(p - 2acos'§) 2kasln5
Hs~ \,-2%009-5 e 1+i = ( ) 31 -

16ka cos -§

_ i + 15 + 33 _ 7 ]_'_
2k8.0083§ 512 kacos§)2 32(kacos2 _g)z 4(kacos '§>

1- exp(121rv )

+m(27rkp)'1/2 exp[i (kp+—1”§):] Z 5 exp[iv (riﬂrexp[iv (m= ’;1
n

-2

v -1
X<1+i al‘:p +> , (4.77)

where
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X ,-
gl 3 - 1 -4 3 5
[A“'B] E“’ m (3—3 '1;;5 te 2(:1( >
n

Y 1 (1 1 el 2813) :l @.78)
el N4 15g] | 1280 11340

and ;n is given by equation (4.67). The first group of terms in (4.77) represents tke

optics contribution to the far field, o7 the first term itself is the geometrical optics
field; this development is numerically useful only if ka coas(g/ 2)>>1. The summa-
tion over n represents the creeping wave contribution to the far scattered field, and
is practically applicable only for |#-]> m™!. In the far field (p =) and in the
back scattering direction (§ =0), equation (4.77) becomes:

- tko-i—=
o 4
H: ~ P\ Tic e , (4.79)
where
T Sw -
i—-1i2ka 1= C
PHN%Vwkae 4 (- 1161113 - 393 2+...> +%mo 6 ____n_
512(ka) n sm(nvn)

(4,80)

In the far field (p — ) and in the angular region |¢- 1r| << m-l, the domi-
nant contribution to the scattered field may be written in the form (4.79) with PH
given by (Goriainov, 1958):

sin Eu(ﬂ -7)
- i -
PH~-—¢—.;,——]-tmv7 2 Gatp- 7)) 271 q (e ) o279

(4.8

where
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a® = FET T exp(ll;‘t) ——,%g d (4.82)
Fwith v and w, given by (4.62) and (4.52), respectively. The reflection coefficient
function q(E) is tabulated in Logan (1959, vol, 2) for E = -2,00(0.01)2.00, and for
[ = -3.0(0.1)3.0,

In the particular case of forward scattering (§ =), a more refined approxi-
mation has been derived by Wu (1956); the forward scattered field is still given by
(4.79) wien

281 =~ 6ll= 1= .1 -5 73769 =
100(11340 M, - 1260 Mot 75 Mg 4M6> m +400\5239080 M-

56299 <. L 1619%= 1T =& 1= -1
“ 318 it M s M5t %0 M-a) m ot (4.83)
where
— i% _ 1%"—
M_=-1.088874119¢ °, M, = -0.93486491 e ,
r
-— - 13
M, = -0.1070199 , M, = -0.757663 e ~ ,
_ 1-231 _ 13
M, =-1.1574¢ ° , M_, =-3.70400389e ° ,
Nyl
M_, =0.41682138¢ ° , M_, =3.17579652 ,
_ S )
M_ =2.55065945 + 3.12247506 e~ , M_g =2.06575721e
T
~ -13
M_g = -1.36515171 - 2,94764528 ¢ . (4.84)
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It is easily seen that for § ~#, formula (4.81) coincides with the first two terms of
the expansion (4. 83)*, The total scattering cross section follows at once from (4,83)

and from the forward scattering theorem,; the explicit result is given in Section 4.5.

4.4 lIinpedance Boundary Conditions
Some considerations on the case of impedance boundary conditions have al-

ready been developed in Sections 4.2 and 4.3 (see, for example, Table I in Section
4,2 and the discussion on line sources in Section 4.3). Most authors limit their con-
siderations to the scattering cross seciion {(Lax and Feshbach, 1948; Rubinow and
Keller, 1961; Sharples, 1962, An asymptotic evaluation of the reflected field for
plane wave incidence can be found in Keller et al (1956),

The far back scattered field, produced by a plane wave at normal incidence
with the electric field parallel to the cylinder axis, may be obtained ar a particular
case of the results given by Uslenghi (1964). If the incident field is such that

E'=1 ", (4.85)
and the impedance boundary condition (2.4) is valid, where Z = n\Ju/e is the surface
impedance, then the far back scattered fleld may be written in the form

b.s " 2 ikp_i% ~ i n
Ez' ~ '"—k; e Ao+2 - (-1) An , (4.86)

with the coefficient Kn (n=0,1,2,...) given by the first of relations (2,36). Treat-
ing the summation over n as a residue series, the summation is replaced by a con-
tour integral C in the complex v plane taken in the clockwise direction around the
poles at ¥ = 1,2, ,,.; following a Watson transformation, the contour C is then de-
formed to include the poles of the integrand which lie in the first quadrant (see Fig.
2-3). Thus, the far back scattered field is obtained as a sum of two contributions:

r
The diagram of §({) in Fig. 3 of Goriainov (1958) appears to be incorrect,
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b.s. b.s. b.s. .
E, =~ (Ez )reﬂ.+ (Ez )cr.w. g (4.87)

the reflected field arises from an asymptotic evaluation of the term containing Ko in
(4.86) and from a saddle point evaluation of the line integral, whereas the creeping
wave field is represented by the residue series due to the complex poles of the inte-
grand. One finds that

b.s., _ n-1 [& ikp-i2ka i (5, 0 o o .2
B renn.™ n+1\2p © E*zka[a"nz_l(l 2n 2"3}' (4.88)

The leading term in (4.88) is the geometrical optics field; the "reflection coefficient'
is given by (n-1)/(n+1) and becomes (-1) for a perfectly conducting cylinder (n = 0),
TLe case in which the relative surface impedance is close to unity is of considerable

interest in applications to absorbers; for n=1, formula (4.88) becomes:

b.s. a ikp-ﬂka(ﬁ _ 381 cb.s.
(E, )mﬂ.n. ’Zp e T 3ka ‘B, )g.o. . (4.89)
n=1 n=0

The creeping wave contribution is given by

-iﬂ 1kp t -1
b.s. ~ 227 -1 4 e E : 2 -2, n_ ,
(Ez )cr.w. 22m m “e \fk? = |E1n(7rvn)w1(tn)éq * m2>]

(4.90)
where w, is given by (4.52),
v, = katmt_, m = (ka/2)!/3 | (4.91)
and the tn's are the roots of the equation
wi(t )
wl(tn) = imn ! ’ (4.92)
1'n
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which may bLe obtained from the values f w’l(t)/wl(t) that were computed by Logan
and Yee (1962) when t lies in the first quadrant. A similar analysis of the far back
scattered field may be carried out for the H-polarization.

An approximate expression of the forward scattered field (and of the total
scattering cross section) has been found by Sharples (1962) who used an extended
form of the Kirchhoff-Fresnel theory of diffraction, and arrived at numerical results
for values of the relative surface impedance either large or small compared to unity.
The method of Sharples is an extension of a previous work on soft cylinders by Jones
and Whitham (1957), and leads to more accurate results than the variational tech-
nique developed by Kodis (1958).

The quantities v of (4.91), and the corresponding quantities for the H-polar-

ization, are the roots of the equation

(1) (1) §= n-l. for E-polarization,
(ka) +1 H,, "(ka) = 0, (4.93)

&€ =n, for H-polarization,

which have a positive imaginary part; in the particular case n =0, the vn's are
given by the asymptotic expansions (4. 44) and (4.67) of Section 4.3. The roots of
equation (4. 93) have been studied in detail by Streifer (1964), for the two cases in
which & = O(m-z) and £ >20(1). I we indicate with a and Bn the opposites of the
roots of Ai and Ai', which are given in Tables II and III of Section 4.3, then
(Streifer, 1964):

T s
i -13

.2
kate ° s i -7
Yo ™ e ma - m g 70ka 10
L

12y 4T
3/1 -2 2 1 -2, -2 i '3(1 13
38 \E'§>°’nm 2wt U-E)-gFe <72 18g2 —3-f )x

Xazm-4+0(m-5) , for £ 20(1) ,
o (4.949)
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whereas:
n
13 o3, Bﬁ) a. 1 (1o fa
v~ kate "mB -T5 an "o/ tmm\'tT3%) "

4Bn

x T
-i< 2 i3
3.-1_ g% -3 i -3 3'3/1 1 4
+1iEe Sn m- % B ka- TG (1+Bn )+iE e ( 5) m -
n

- -
380 28
x T
5633(_15__31.5.> +5;e’3c4__5_7> 5 _
g8 2 Bt 28
n T
_15_313(1 UB, 3 -2, 1,3 13
20 2 " 126 5 2 X
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for £ = O(m-z). (4.95)

If the radius of the cylinder is very large compared to the wavelength, then only the
first creeping wave, corresponding to that root v of either (4.94) or (4. 95) which
has the smallest imaginary part (hereafter :alled the "first root'), gives a sizeable

contribution to the scattered field. The positicn of the forst root v, in the complex

1
v-plane is indicated in Fig. 4-4 for £ =0, 1, and infinity, and for various values of
ka. The position of v, for two fixed values of ka and for § varying from zero to

infinity is plotted in Fig. 4-5. Finally, values of v for different values of ka and
£€=1 are given in Table IV (Streifer, 1964); these values are in good agreement with
those obtained by Weston (1963).
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FIG:. 4-4: THE FIRST ROOT v, OF (4.93) FOR THREE VALUES OF §
AND VARIOUS VALd'ES OF x = ka (Streifer, 1964).
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TABLE IV
]
The First Root v of Hf/l) (ka) + 1HL1)(ka) = (0, (Streifer, 1964),
-1 -1
ka El-ka)m ] ka El-ka)m ]
L_ €=1 £=1
—
4 1.051 +11.,300 14 1.118 +i1,542
5 1,064 +11,355 16 1,123 +1i1.561
6 1.075+11,394 18 1,128 +11,578
K 1.084+11.425 20 1.131 +i1.592
8 1,092 +11,450 30 1,142 + 11,643
9 1.098 +11,471 40 1.148 + 11,675
10 1,103 +11,489 50 1,151 +1i1,699
12 1,112+11,518

4.5 Radar Cross Sections
In this section, we shall state the principal results on high frequency back

scattering and total scattering cross sections for a perfectly conducting cylinder, and
mention briefly the various techniques which have been used in the case of impedance
boundary conditions,

The geometrical optics approximation to the back scattering cross section

per unit length of the cylinder is given by

o = 7ma , (4.,96)

and is the same for both polarizations. The agreement of (4.9"" with the exact re-
sults is excellent even for relatively small ka in the case of E-polarization (see

Fig. 2-10), whereas it is unsatisiactory for H-polarization (see Fig. 2-11). A more
refined approximation to the back scattering cross section is obtained by computing
the far back scattered field with the aid of the formulas given in Sections 4.3 and
4.4,

"
The formulas of Section 4.3 may be used to compute the bistatic cross section.
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For many practical purposes, it is sufficient to determine only certain aver-
age character.stics of the scatterer, such as, for example, the total scattering cross
section. According to the forward scattering theorem of formula (2.69), which holds
for both polarizations, o can be easily derived from the forward scattered field.

total
Thus, in the case of the E-polarization, it follows from (4.63) that (Wu, 1956):

©yeal)E ~ 48 E+o.49807659(ka)'2/ 3. 0.01117656(ka)'4/ 3. o.o1468652(ka)'2 +

+0.00488945(ka)"%/ 3 + 0. 00179345(ka)1%/3 +.. J ) (4.97)

whereas for the H-polarization, it follows from (4.83) that (Wu, 195€):

@ . ). ~ 48 E- 0.43211998(ka)"2/3 - 0. 21371236(ka)" /3 + 0.03573255(ka) "2 -

Stotal’H

- 0.00055534(ka)"3/3 + 0. 02324932(ka) 1%/ +. :] . (4.98)
In particular, the geometrical optics % otal is given by
(°tota1)g.o. = 4a , (4.99)

for both polarizations. The total scattering cross section, normalized to its geomet-
rical optics value (4.99), is shown in Fig. 4-6 for E-polarization and in Fig. 4-7 for
H-polarization. In both figures, the exact value computed from the exact series solu-
tion (such as (2.71) for E-polarization) is shown in full line; the approximate values
given by the first few terms of (4. 97) and (4. 98) are shown in broken lines, It is
seen that the first three terms of (4.97) give an excellent approximation to the exact
value of % otal for all ka > 1, whereas in the case of (4.98), the first three terms
represent a good approximation for all ka 2 4.

The technique employed by Wu (1956) to arrive at (4.97) and (4. 98) allows us

to find any finite number of terms in the asymptotic series. It consists in solving
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FIG. 4-6: NORMALIZED TOTAL SCATTERING CROSS SECTION o . ./(4a}
AS A FUNCTION OF ka, FOR ELECTRIC FIELD PARATSEYL
TO AXIS; (I) GEOMETRICAL OPTICS WITH ONE CORRECTION
TERM, (II) GEOMETRICAL OPTICS WITH TWO CORREC TION
TERMS. (King and Wu, 1959)
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FIG. 4-7: NORMALIZED TOTAL SCATTERING CROSS SECTION
o /(4a) AS A FUNCTION OF ka, FOR MAGNETIC
Ftﬁt, lD PARALLEL TO AXIS; (I) GEOMETRICAL OPTICS
WITH ONE CORRECTION TERM, (II) GEOMETRICAL
OPTICS WITH TWO CORRECTION TERMS. (King and Wu,
1959)

142




THE UNIVERSITY CF MICHIGAN ————m

7133-3-T

the reduced wave equation in the region outside the cylinder by considering thia re-
gion as a Riemann surface with infinitely many sheets; this procedure is essentially
different from that given by Franz and Deppermann (1952). A different approach to
obtain (4.97) and (4. 98) has been developed by Beckmann and Franz (1957),

Before the 1956 paper by Wu, various attempts were made to obtain a high

frequency expansion for o following essentially two different ways. Wu and

Rubinow (1955) performedtgzarly extensive transformations on the exact series solu-
tion for the forward scattered field, and succeeded in determining the first correc-
tion term to geometrical optics for both polarizations; their method was, however,
too cumbersome to permit the dete *mination of higher-order terms. An entirely dif-
ferent approach was adopted by Papas (1950), who used the variational method of

Levine and Schwinger. For example, for the E-polarization, Papas finds that

-1/2
4
Ototal ~ 12 E‘ (';; )j ; (4.100)|

although the leading term of this formula has the correct value 4a, the higher order
terms are incorrect. Subsequent works by Wetzel (1957) and Kodis (1958) proved
that it is very difficult for the variational method to provide even the first correction
term to geometrical optics. Kodis, for example, finds that

( )

ototal E

~ 4a E+o.746(ka¥2/3:| , (4.101*

and it is seen by comparison with (4, 97) that the numerical coefficient of the second
term of (4,101) is in error by about 30 percent.

Finally, we mention a few works on the determination of % otal
with impedance boundary conditions. The phase shift analysis procedure which was

described in Section 2.2 permits to calculate the approximate high frequency cross

for a cylinder

section; however, Lax and Feshbach (1948) give explicit results only for the sphere.
The determination of the scattering cross section (and of the shift of the shadow
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boundary) for a cylinder with impedance boundary conditions was performed by
Rubinow and Keller (1961), who also extended their results to any smooth two- or

three-dimensional cbject. A different approximation method was developed by Shar-
ples in 1962 (see remarks in Section 4.4),
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SCATTERING FROM A Sng-INFINI'I‘E CYLINDER

This section i8 devotcd to the scattering of electromagnetic und acoustic
waves by a semi-infinite cylinder of circular cross section. Both a thin-walled tube
and a solid cylinder are considered. The boundary conditions are -g—: = 0 (rigid
cylinder) or u = 0 (soft cylinder) for the scalar case and it is assumed that the cyl-
inder is perfectly conducting in the electromagnetic case. When the scattering body
is a thin-walled semi-infinite tube the sources :an be located either inside or outside
the tube, In the former case we assume the solution of the corresponding infinite
waveguide problem to be known., That is, the amplitude and phase of all modes are
known at the point corresponding to the end of the tube,

The semi-infinite cylinder problems are solved by employing the method of
Weiner and Hopf (1931) for treatment of integral equations in the interval (0, m).
However, the calculations will be somewhat more straightforward if one does not
formulate the problem as an integral equation but instead takes the Fourier transforn*
of all quantities before applying the boundary conditions. This approach has been
used by Wainstein (1949) and Jones (1952), among others.

To illustrate the method we will treat the problem of electromagnetic scatter-
ing from a semi-infinite rod (i.e. a solid cylinder with a plane end surface). The
corresponding scalar problem for plane wave incidence has been treated by Jones
(1955) and as in that case the final expressions contain the solution for the semi-
infinite thin-walled tube plus additional terms which make the solution fulfill the boun{
dary condition on the end surface. These additional terms are not expressed expli-
citly but only given as the solution of an infinite system nf linear equations. Contrarﬂ
to the infinite cylinder case, the solution of the electromagnetic scattering problem
for the solid or tube-shaped semi-infinite cylinder cannot be constructed from the
scalar problems with boundary conditions u=0 and Qu _ 0 respectively by taking the

op
incident scalar waves as the component along the cylinder axis of the incident electric
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and magnetic field. The scattering field due to an incident TE field, for example,
consists of both a TE and a TM part.

5.1 Electromagnetic Scattering from a Perfectly Conducting Semi-Infinite Solid
Cylinder
Let (p, §,z) be cylindrical coordinates as in Fig. 2-1 and let the semi-infinite

circular cylinder occupy the space pga, 2 20. As before, the time dependence
o %% il be suppressed throughout.

We write the total electromagnetic fields as

E-E

[o]

+E° (5.1)
H = H+H°

where _E_i and Lli denote the incident field (the field obtained if the rod were absent).
The scattered fields E_s and ll_s satisfy the Helmholtz equations

I

P+ KHE® = 0 5.3)

P+ 1A = 0 (5.4)

outside the rod (k = w J€u = 27 /1) and the following »dditional conditions:

@ E;=-E; , E:=—Eiz p=a, z>0
E:=-E: ) E;=-E; p<a, z=0

(ii) gs, gs satisfy a radiation condition at infinity

-1/3
i %, p .2 ~ oY, Ej(a,po.z>~0(z2/3)

8 -1/3 8 »
H(a,p,2) ~0z '), H¢(a.¢o,z) of1)

as z—» -0 where ¢o is an arbitrary fixed angle.
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Condition (iii) is the edge condition, necessary to ensure uaiqueness of the solution
(Bouwkamp, 1946; Meixner, 1949; Heins and Silver, 1955; Van Bladel, 1964).

We assume temporarily that k = kr+ iki (kr >0, k1 >0) and allow ki—b 0in
the final results. This assumption is equivalent to introducing losses inthe surround-
ing medium and consequently the Fourier transform of all field quantities related to
the (outgoing) scattered wave will exist in the ordinary sense. We expand all field
components in a Fourier series with respect to § and take the Fourier transform with

respect to z. Thus, for example

2T ~O
_ 1 -i(az+nf)
tzn(p,a) = 3 Ez(p, p.z)e dfdz (5.5)
0 V-
from which the original field is obtained as
@ @
s N inf) icz
E o, 2) = - z :e ¢, 020e "da . (5.6)
n=-m -

If we associate ¢ 1 imaginary part to k it follows that the fields are exponentially
decreasing as |z|-»c and that their Fourier transforms are analytic functions of a
in the strip -ki <Ima < ki'

Let F(z) be a function, exponentially decreasing as |z| ~ ®, and Flo) its
Fourier transform. We introduce the following notations

F(z), z >0
F+(Z) = {

0, z<0

0, z>0
F (z) =

Rz), z<0

+ - —
Denoting the Fourier transform of F (z) and F (z) by f(a) and F (@) respectively,
Iwe have
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o) = o\ T
Fla) = -5~ v-a & (5.7)
-
@
"o = = | T
Fa=gr | oo (5.8)
-0

where the path of integration passes above the pole ¥ =a in (5.7) and below it in
(5.8). Equations (5.7) and (5. 8) are easily obtained from application of the Cauchy
integral formula to F(a) in its strip of analyticity. ?'+(a) is analytic in the lower
half-plane (Ima < 0) and F (a) in the upper one.

The z-component of (5. 3) in cylindrical coordinates reads

2_8
aE
1 z. 2 2.8 _
> 2 +kEz-0 (5.9)

pap

and the same equation is valid for Hz. The corresponding equation for t:n and Z:n
is

2 6:n(p.a)
( Y 5 10)“
P ap 9p 2 : :

8
* zn(P. o)

I
Q

This is Bessel's differential equation and the solution valid for p > a and satisfying
the radiation condition is

8
6zn(p.a)

8 =
x zn(pn a) -

——
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The solution for the region p <a, z <0 satisfying the boundary conditions on the
‘| plane end surface can be obtained by use of images. We use the superscript I to
denote quantities related to the field in this region and define

I- I- I- I-
Czn(p.a)+ ézn(m -a) [Em(a.aH 6zn(a, -a)]

JCIz'n(p. @) - Z;;(p. -a) Z;'n(a, a) - Z;'n(a. -a)

The fields obtained by inserting these czn and xzn in (5.6) are the total fields in the
region p <a, z <0 if there is no source of the incident fields in p <a. If there are
sources for p <a we have to add the incident field plus its reflection by a perfectly
conditing infinite plane at z = 0 to obtain the total field. Thus, for p <a,

Source at p_<a , ‘Ci-n(p,a) = 6:;(13,0)— t:l(p. -a) 5. 15)r
x5 (0,0) = X (0,002, 6, ) (5.16)
Source at p_>a , 6:1(11,01) = 61;(p.a)+tiz;(p,a) (5.17)
x(p,0) = X (0,00 + ] (0,) (5.18]

where the + and - superscripts denote a division according to (5.7) and (5.8). That

the fields obtained from (5.13) and (5.14) satisfy the boundary condition for z = 0
follows from the fact that the pertinent E ¢ and Ep are both odd cantinuous functions

of z and thus vanish at z = 0.
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If li:z and Hz are known for p = a, -@ <z <m, they can be obtained every-
where from equations (5.11) - (5.14). The remaining field components can then be
derived from Maxwell's equations. As a special case we obtain the following equa-
tions between the field components at p = a:

( (ax)

s - “ 2 —
chn(a.a) = (1), [ pn(a. )+ 6 (,a:] (5.19%
75 (a,0) = - %5 (a,0) e, w0 € (a,a) (
a,a) = - a,a)t a,a 5.20
fn u2 zn xH:ll)(ax) Zn 1

iJ (ax)
. n 2 { 1I- I-
WK J* (ax) E‘ (6_¢n(a'a) - t‘.pn(a. 'O')) +

+28 (f.;(a,a)+d;(a, -@] (5.21)

iwe J° (ax)

le;(a,ahJ(;n(a, o =-2 (XI_ (a,a) Z‘ S -a)) = (an) X

Xl (a,a) l‘ (a ) =

X Qélz-n(a' €)+ Ci.n(a. -aD (5. 22}

1
where x = \(k - (the braunch whose real part is positive when a = 0) and H(l)

and Jx'x denote the derivative with respect to the argument. We define

en(a) = xzaz Epn(a,a)+anaizn(a.a) (5.23J

hn(a) = x2a21¢n(a. a)+ anaal‘zn(a,a) . (5.24)
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| For the incident field we have
(1)
x‘ ( mn (ax) i
zn a,a) 2 (1)1 en(a) (5. 25)
WK 8 H (ax)
i iwex aszll)r(u) 61
h (@) = — (a,a) (5.26)
n H(l)(ax) zn
n
if the source is at p°< a, and
iJ (ax)
x:n(a.a) = —-—32-—— e:(a) (5.27)
wuxa J:';(a")
2
{ wexka“J' (ax) i
hn(a) = T e l‘.'.zn(a.a) (5.28)
n

if the same source is at po>a. Combining (5.19) - (5.28) and using the fact that
C:n(a,a) = f;n(a,rx) = 0 (total field) we obtain

. ) A w0 7 (a0 3, (ax)
kzn(a,a)*-xzn\a. 'ﬂ) (1)( ) J' (ax) ( (a) -e (a)> J (“) e (-Q

(5.29)

( )(ax) Jl'l(ax) _ i
h (a) h_ (-a) = iuexa (1) 3:(;:) (Czn(a,a)- ézn(a,a)_

J'(mc) _
- Jn( t (a -a) (5.30)

#where all quantities except ei(a) and 6; n(a') are related tothe total fields. Equations
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(5.29) and (5.30) are valid if the source of the incident fleld is at p,>a. lf the
lource is at p <a the correaponding relatlons are obtained by replacing e (a) by
e (a) -e (-a) in(5 29) and 6 (a) by t, (a)+é (-a) in (5. 30).

Employing the Wronsldan we can write

Hu)(u) J_(ax)
n n -21
o " 3 - T (5.31)
Hn (ax) n raxJ' (ax)H (ax)
(1) .
Hn (ax) Jn(ax) 9
A% %™ racs @or e o5
n aK n TaxKk naK n aK
We now perform a factorization such that
L @L (-a) = riJ (@) (ak) s.33)|
n n n n
M @M (-a) = i3] (ax)H( ) (ax) (5'34)U

where, for Ima > 'ki‘ Ln(a) and Mn(a) are analytic, have no zeros and behave as
O(1/Ya) as |a|—> . We define

L_n(a) = th) (5.35)1
M @) = Mn(a) (5.36%
Mokz) = Ll(") . (5.370

Further details about the functions Ln and Mn are given in Section 5.6. Equations
(5.29) and (5.30) can now be rewritten as
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en(k)

+ - + +
- ; -F (@)+f ) -
(um)(xzm.a)nez(a-a) My(e) = Fla) 1 o) -
n

2¢_(a) e_(k) - -
= — -5 + F ) - £ ()
a%k®M (@ a’kik-a)M_(K)
n n
+ - + -
h (@) - b () BT (-K) - b (K)
§ -2 L (=a) -G ) +g (a)-1-2 L (k)
we(k+a)a n n n we(k+a)a

- + -
2 Czn(a, a) h (-k) - b (k)

= 25 -1 L (K+G (2)-g (@)
a(k+a)Ln(a) welk+a)a n n
where
Jn(ax)M () _
Fn(a) = “Jx’z( o) en(-a)
kJ' (ax)Ln(-a) _
G"n(a) = T (k+a)d n(ax) tzn(a’ )
and
, e:(a) , source at p°>a
fn(a) =722
ak Mn(a) e:l(a)-e:!(-a), source at po< a
t:n(a,a) . source at p_ >a
2

l?;n(a’) = alk+a) Ln(a)
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The left hand side in (5.38) and (5.39) is analytic w.en Ima < ki and the right hand
side is analytic when Ima > -k‘. They consequently represent a function analytic in
the whole a-plane. The behavior of the Fourier transforms of the field components
when |a |-+ @ is given by the edge conditions and Ln(cr) and M (a) are O(1 [Va) as
|a|~» . From this it can be concluded that both sides tend to zero at infinity and thew
common analytic function is consequently identically zero. The constants e (k) and
h ( K-h_ (k) in (5.38) and (5. 39) can be determined by putting @ = -~k in (5, 38) and
a=kin (5 39) and using the relations e (k) knaé (a k) and

b (-1~ b (k) = -kna[#] (s, -K)+ X (8, 10] obtained from (5.23) and (5.24). Per-
forming this we end up with the following expressions:

aknL (k)

e (@) = alk+a)M_(a)
n n {41[" 2M2(k)— L (k)

[2x%a®M (k) (g0 - G (k) -

-aL (k) (£(-K - F:(-RD] + 2esa) (i) F;(a)i}
(5.44j1
aknL, (k)

€ (a,0) = L (a) nL_(k) (g (K -G (k) -
zZn n 4k2a2M2(k) n2L2(k) [ n (n n >

-2 (0 (-0 - i) + 2rad (g;(a)-c;m)} .
(5.45)

Employing equations (5.8), (5.40) and (5.41) we obtain
) ( \lk2 -y )M (-'y)e (-y)

F_ (a) = == (5.46
2mi a\lk -y J ( \]k - 5(‘7 a) ‘
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L (P VW G ) eng

G @) = 5~ dy (5.47)
A (k+)d_ 7 ) (r-a)

where the path of integration passes below the pole y=a.

Thus, equations (5.44) and (5.45) are in fact a system of integral equations.
The only singularities of the integrands in (5.46) and (5. 47) in the lower half-plane
are simple poles and by completing the contour of integration by a large semi-circle
in the lower half-plane F;(a) and G;(pz) can be calculated by means of residues, We

write
()]
A
- - am
Fn(a) = Za+a' (5.48)
m=1 nm
o)
B
- _ nm
G_a) = :‘;_——”am (5.49)
where
' ' ) |2
1 Mn(anm) en(anm)j om 5.50)
nm a.2 a' (n"-j'z) .
nm nm
2 -
- _I_'gianm)jnm czn(a’anm) m 31
nm a3a (k-a )
nm nm
(5.51)ﬂ
2 -
Bno = 3 L l‘(k) ém(a,k)
and
J;x(jl'nu) =0, 0= jr'mqh <...
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a' = . Ima' >0
nm
Jn(j )=0, O-jn°<jn1<..
a = . Ima >0
am

(we define joo *e= 0 although they are not zeros of Jo and J '1.)

Inserting a = al"m and a = @ respectively in (5, 44) and (5. 45) we obtain the fol-
lowing infinite system of linear equations for the coefficients Anm and Bnm:

aa, (@~ 512)
o 2 erary B
n%neine ey,
nm + 2 2 - nm
aln Ln(k) ELn(k)( E- prr g +fn(-k)> -2a'k Mn(k)<8n(k) - Z_ Kt a )J
m=1 am m=0 nm

nLi(k) n+ 2a2k2Mi(k)> - 4a2k2Mi(k)

' Q
(alk-ay)) > fam o)) m=oLZL
2 =) a' +a' n ot

ol “nm 1 =123,...

(5.52)
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The functions Fn(a) and Gn(a) affect only the boundary values on the plane
end surface. Ez(a, z) and E¢(a, z) vanish for z >0 for every choice of Fn and Gn.
In particular, by taking Gn(a) = Fn(a) =0, (5.44) and (5.45) express the solution for
a semi-infinite thin-walled tube. In this case, the fn(a) and gn(a) are defined by the
upper alternatives ia (5.42) and (5. 43) regardless of the position of the source of the
incident field.

The field components at an arbitrary point can now be calculated as a summa-
tion over n = -0 to o and an integration over a from -w to o of expressions
containing the quantities e;(a) and 6;n(a,a) of (5.44) and (5.45). We write

0.1

xe.8.9 = B g0+ D o | e e0+en (0] ¢ da

n
r (5.55)

p>a, -w<z<mw

where X stands for an arbitrary field component. The path of integration I is as
indicated in Fig. 5-1 after the imaginary part of k is put to zero. When p <a and

Imo

’zeros of Jn@\/k - az> or J!'l (am )
-k A/,‘/ 7'\ l r
k

l branch cut

—® Rea

FIG. 5-1: PATH OF INTEGRATION FOR THE INVERSE FOURIER TRANSFORM
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the source of the incident field is located at Py >a we have

m
X(p,p,2) = '217 Zm ! E\(O)Jn(p&)*'B(a)Jl'l(pK) e a  (5.56)
,“'l
p<a, -0<z<0
If the source is at p°< a we write
®
X6,8,2) = X6, 2+ X0, 8,0+ = D ™| (A o0+ B (6] 6% 2
N r
p<a, -0<z<0 (5.57)

where X' is the incident field reflected by a perfectly conducting infinite plane at

z = 0. The expressions for A(a) and B(a) in (5.55) - (5.57) are given in Table V.
The radiation far field can be obtained from (5.55) by estimating the integral

by the method of steepest descent. If we introduce spherical coordinates (r, 8, §)

such that z=rcosf, p = rsind we get

Q0

ikr
X(r,6,9) ~ Xi"‘g'r— % 112_;) em¢(-i)nEiA(kcosG)+B(kcoao_;] (5.58)

when kr - is krsinzo >»>1,

Equation (5.58) is obtained under the assumption that the source of the inci-
dent field is located at a finite distance. For plane wave incidence, the scattered
field in the region 6 < Oo, where 90 is the angle between the direction of propagation§
of the plane wave and the positive z-axis, contains an additional part equal to the
field reflected by an infinite cylinder. A and B in (5.58) are still given by Table V
with bla) and clo) belonging to p >a. The terms containing p in the denominator
then contribute only to higher order terms and should be disregarded.
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TABLE V

Relation Between the Field Components and the Quantity X
of Equations (5.55) - (5. 58)

X Ala) Bla)
in ila
E - bler) — cla)
P pxaaz K
an 1
pK K a
Ez cla) 0
Len a
Hp 5 cla) > bla)
pK W a
ina e
H¢ - T332 2b‘a) " clo)
pWLK a
i
Hz 2 blx) 0
WK &
- i - -
e (@)-e () e (@)-e ()
bla) = = ba) = Rt
H ™ (ax) n
n
- i -
@) = €, (8.0)-¢, (a,) e = Z, (aa)+ C;n(a, -a)
H:ll)(ax) Jn(ax)
when p >a when p <a
2 .2 2
kK =k -a

161




THE UNIVERSITY OF MICHIGAN
7133-3-T

5.2 Scattering of a Scalar Plane Wave by a Semi-Infinite Cylinder

The case when the cylinder is solid, i.e. a rod of circular cross section, has
been treated by Jones (1955) (cf. also Matsui, 1960) for both the boundary condition
g—:: =0 and u=0. His results also contain in principle the solution for a thin-walled
tube and therefore we will not treat that case separately. Since the problem under
consideration can be treated in a way quite analogous to that given in the previous
section, the results will be given without derivation. As noted before, if the solution
to the electromagnetic scattering problem is known, u, = Hz and u, = Ez do not yield
the solution to the scalar problems with boundary conditions 8u1/ 9 =0 and u, =0
for the incident waves ui = l-Il and u1 = E; respectively. The reason is that u, and

1 z 2 1

u, 8o constructed do not satisfy the correct edge condition at the open end of the tube

This section contains essentially the results given in Jones' paper, written in
conformity with our earlier notations (time dependence e Wt

Let the cylinder occupy the space p <a, z >0 and the incident plane wave be

|given by
u(O) = explikp sin 9, cos p+ikz cos Oi) (5.59)
i.e., the angle between the direction of propagation and the positive z-axis is Oi.

5.2.1 The Boundary Condition 8u/dp = O when the Angle of Incidence is
Neither 0 Nor =«

Let the total field be given by

u(pnﬁaz) in p<a, z <0
0 in p<a, z>0

where
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mzcose X, ;I (kasine)
(1) _ i 2 i (1) in
u Z e (1), H “(kpeing )e 4 (5. 60)
n=- n (ka inO)

is the field reflected by an infinite cylinder (cf. Eq. 2.34).
We have

L
P(a)

n=-o (Ica)

u(p,f,2) = (5.61)

where
21j' Pla )
f = nm n nm ’ m>1
nm _ 1
aal'm;(j;xm n )Jn(jnm)
2150n1>°(k) . )
£, ~ 6,,=0 nfm
and as before
x2 = k2— a2
_ = i' = () alth h
J;l(j;lm) =0 0=j  <iy< . (we define j' althoug

it is not a ]é %o of J'

»  positive real or imaginary .

The path of integration is given by Fig. 5-1 and passes above all poles of Pn(a).
The equation for Pn(a) is
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1P (a) G &5 Ga L.Ga
n - n__ __onooo_ E n nm (5.62)
- ' *
(a+k)Mn(a) a lc:conei a+k — a+ a

where

n+l
i (1-cos Oi)Mn(-kcoe 91)

G, = (1)’

sin H "~ (kaein6 )
and Mn(a) is the split function defined by (5.34). The constants a_  are determinecﬂ
by the followiug equations:

- 1 oh 00 nm -
at'lranr— a' -kcosd, a' +k £&—=a +a ' r=0,1,...
or i ar m=1l "nr am
(5.63)
where
2a' (1'2 -n2)
al = pr nr
nr t ' o+ ' 2
jnr(“nr k)Mn(“nr)
a' = 12
2kL1(k)
-7/6
The edge condition requires that a ,~m as m—>m and we must also
have
[01]
6 on® +Za =1. (5.64)
on 00 nm
m=1

The solution for a semi-infinite thin-walled tube is obtained by putting fnm =0 in
(5.61) and & = 0 in (5.62) for all n and m. Inside the tube, i.e., p<a, 2 >0,
the integral in equation (5. 61) can be calculated by residues. Thus,
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. iP (k) Y P )G ) ia_2
o T S o 3 D
n=-oo m=1 aa' (j' )J G
nm n nm

p<a z>0 (5.65)

5.2.2 The Boundary Condition au[ae = 0 when the Angle of Incidence is 0

Here we take the incident waveto be elkz. The total field is assumed to be

eikz+ u in p<a
em+e-m+u in p<a, 2<0
0 in p<a, z>0 .
The result is
(1 Pla) (1)
v ' (xp)e'® p>a
2x (1) (xa)
ulp, P, 2) =< (5.66)
@© om
b g ( u”)
Lz‘,X E‘J'(m) J "‘”’“"z ‘m o “da, p<a
m=0 a a
r
where
21P(n'
h = —,———-;-— , m3#0
m ®m o(jom)
_ 21P(k
b = Tak
The equation for Pl) is
e 1 -i: " (5.67)
B(')(a+k)Ll(a) atk = Satal

where B& = -7 akLl(k).
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%
, The equations for the constants Bm are
LN}
Ll \ ®
2':"91-‘61' EIBO._—“ 3‘“ r=01
[} ) ] $hpene
[hbr*"k)Llhngz aér“‘ m=1 aor+ %om
(5.68)

5.0.8 The Boundary ondition u =0
We assume the angle of incidence to be neither 0 nor = and write the total

tield as
u(0)+ u(2)+ ulp, 8, 2) in p >a
up, ¢, 2) in pga, 2€0
0 in p£a, 230

where “(0) is the incident wave given by (5.59) and

ikz cos 8 int J (kasin®,)
u(2)=-e i e 2 “n i

2 HS Nko sin 8 ) olof (5.69)
n=- I-In (kasin@ 1)

is the field reflected by an infinite cylinder (cf Eq. 2.29). We obtain

2n n=- PHS)( )
ulp, §,2) = (5.70)
i
R @) ® g m
1 ing n nm n\ a iaz
2r n_z" [J (xa) Jol*P) Z 2 :l da ,
=- I n m=1 a -anm
p<a
where
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= ZJnmgn(anm)
Som = 2
n+l “nm
and as before
xz = k2- az
Jm("nm)=0 0<jnl<"n2<”’
2
2 jnm
a = \lk - =~ positive real or imaginary .
nm a2
The equation for Rn(a) becomes
R § n'om (5.71)
Ln(a) ar-litcosei o a+ a n

where

n
(i) Ln(-k cos 91)

"Y -
B ysing B
in

kca sin6,)

and Ln(a) is defined by (5.33). The Yom 2T determined from

2
-:a :nrynr = -lkcose - P 7:_1\; > FEbi.. 6.72)
o L% ) Cor i msl ar am
ar n nr
We also have
v = O(m-7/6) as m-—>» @
nm
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and

iv =1 (5.73)

m=1 mh

The solution for a semi-infinite thin-walled tube can be obtained by putting 8om ™ 0
in (5.70) and Yom ™ 0 in (5.71) for all n and m. Inside the tube the field can be ex-
pressed as

2
ulp,$,2) = -1 Z ing Z am™n nm)Jn(jnm a! Yom? (5.74)

3 e
- 1
n=- a anmJ n(j

p<a, z>0

5.2.4 The Far Fileld

For points at large distances from the origin the integrals in equations (5.61),
(5. 66) and (5.70) may be evaluated by the method ot steepest descent. The integrand
has a pole at o = kcos 61 which for certain points of observation will be close to the
saddle point. To overcome this difficulty a method by Vander Waerden (1951) is
used. We introduce spherical coordinates (r,0,§) p =rsinfd, z=rcos 6 and follow-
ing Bowman (1963b) we write the field in the far zone krsin26 >> 1 as

eikr eikr cos(0-6 1)
u ~Ue,9 =+ H(O - Oi)A(ﬁ) — -
1
- 3 8En(0 -0 )APIT(r, 6-6 ! m (5.75)
where
0 P (kcos6)
ue, §) = %r Z N (1). oo (5.76)
n=- ksin8 H (ka 8in 6)
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T
-i= Jt'(kasing)
Al = J-g e 1 E il L inf (5.77)
n=-m \(sin8 H  (kasind)
in i
when the boundary condition is -g—:;l =0 and
@
R (kcosB)
ue, P = L E : ) i olnf (5.78)
n (1)
n=-

Hn (ka 8in 6)

T ®
-i= Z J (kasin®,)
~ (1)
n=-o sinei Hn (kasinei)

3

(5.79)

when the boundary condition is u=0. The total field is obtained as before by adding
the incident and reflected waves to u. The functions H(6 -6 i) and sgn(6-0 i) are the
Heaviside step function and the signum step function defined by

l, x>0 riy, x>0
H(x) =

sgnx = (5.80)
0, x<0 -1, x<0

The function T{(r,6-6 i) is given by

iy

i
2
T(l'.e-ei) = e-izw erfc [(-l-i)“a - \:m (5.81)

6-

0
where w= \IB 2 i l and the error function is defined by

sin

©® 9

erfcz = 2 e.t dt

ir

(5.82)
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(1)

The second term in (5.75) removes the reflected wave

(2)

and u' respec-
ively in the region 6 >0 i The last term can be interpreted as a transition contribu-
ion which assures a coxtinuous field across the shadow boundary 6 =6 i Thus it
compensates for both the jump in the reflected field and the singularity of the first
erm at 6=0 i For fixed 0 # 6 i the transition term is asymptotically smaller than

other two; in practice it can usually be neglected when w > 4,
For ka <<1 and the boundary condition u=0 the only term in (5.70) which
must be considered is that for n=0, For values of o such that |ea]<<1 we can
write the equation for Ro(a), (5.71), as

®
"Ro(a) = 1 _ Z 70m
Lo(a) o\a-kcos@ ata

i m=1 om
~ 70
ms—ei [:1+i(a-kcosei)§]
(0) ile-kcos9,)t
IR el (f:;) ' (5.83)
Yoo

Yom (0)
where § =i pann and R '(a) is the value of Ro(p) when Yom = 0 (all m), i.e.
m=1 om

the case of a tube-shaped cylinder. Near the saddle point we have |@a|<< 1 and in
estimating the far field we can consequently replace Ro(a) in the integral of (5. 70) by
the expression given in (5.83). This integral is then just that which occurs in the
diffraction by a semi-infinite thin-walled tube at the positions p=5, - Lz ™.
Thus, the far field for the semi-infinite rod is the same as that produced by

a semi-infinite thin-walled tube of the same diameter, but longer by §, subject to
the same incident field.

Under the assumption that 'yom =0, m > 2, Jones calculated § to be 0,087a
and he estimates the correct value to be close to 0.1a.

8u=0'

There is no corresponding result for the boundary condition a-p
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5.2.5 Numerical Computations for the Boundary Condition au[ 9 =0

Jones shows that when the angle of incidence is zero,

a
tu+2) qdt =2(1-8) . (5.84)
0

2
2

a
The modulus of the left hand side of (5. 84) represents the average pressure amplitude|
on the end of the rod if u stands for the velocity potential of a small-amplitude sound
wave. The constant Bo is obtained from (5.68). Jones solves this equation approxi-

mately by assuming successively

(1) Bm= 0, m>0 (ii) Bm=0, m>1 (iii) Bm=0, m>2.

The average pressure amplitude as a function of ka for the range 0 < ka< 10 is
given in Fig. 5-2. The plotted curves correspond to the third and seventh (Bm =0,
m > 6) approximation, the latter calculated by Matsui (1960) for ka < 3.

When the incident wave Is propagating along the axis of the cylinder it satis-
fies the boundary condition along the cylindrical surface p =a. The scattered energy
is consequently finite and can be obtained by integration over the end surface only.
The scattering coefficient c, is related to the constant Bo by

c, = 1-2Re{30} (5.85)

<, is defined as ¢, =¢ / 1ra.2 where e, is the scattering cross section defined as the
quotient of the scattered energy and the incident energy per unit area. The scatter-
ing coefficient is plotted against ka in Fig. 5-3.

For small ka (ka < 2) we can use the approximation

~ L (ka)?
c,6 x 2 (ka) . (5.86)
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ka =0, Thus the above integral may be written as
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When the angle of incidence is not 0, Jones shows that, to a first approxima-
tion (which is better the smaller ka), the average pressure amplitude on the end of
the cylinder is the product of the average pressure amplitude when the angle of inci-
dence is 0 and the amplitude of the symmetric wave that is produced in a hollow
semi-infinite cylinder occupying the same position as the rod. The results given by
Jones are reproduced in Fig. 5-4.

Jones also calculates the pressure on the end of the rod due to a pressure

pulse when the angle of incidence is zero. Let the pressure of the incident sound
pulse be given by

o+ ie -ik(vot- z)
= i N e
po(t. z) = H (t- a°> = - 21 k dk (5.87)
-o+tie
where \A is the speed of sound, t is the time and H(x) is the Heaviside step function
defined by (5.80). According to (5.84) the average pressure
(i.e. total pressure/end area) due to the incident wave eikz is 2(1- Bo). The aver-

age pressure due to po(t, z) is consequently

@+ ie -lkvot
= .1 e
pe) = - = — [1-8,00]ak , (5.88)
-00+ i€

The integrand has a simple pole at k=0 with residue 1/2 since Bo= 1/2 when

1-28 (k) -ikv t
- L —_— 9 o
pe) = 1- ori k e dk
-
a0
- 1+1 [(F(k)-l) sin(kvot)+G(k)cos(kvot)] & 5.89)
-
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FIG. 5-4: THE AVERAGE PRESSURE AMPLITUDE ON THE END OF THE ROD FOR
VARIOUS ANGLES OF INCIDENCE (Jones, 1955).
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where 2 [1 -Bo(kﬂ = F(k)+1G(k) aud we used the fact that Bo(-k) is the complex con-
jugate of Bo(k). Jones computes the integral in (5.89) from the earlier values of
iﬁo(k) (third approximation) by replacing F and G by parabolic approximation over
the intervals (0,1/2),(1/2,1),.... The result is shown in Fig. 5-5. The curve
given there is within 1 percent of

Vot 2 1/2
0.915+0,.745 2--;-

Jones also constructs expressions for the distant fields and for Bo whose first varia-

tions are zero for small variations of anm‘ Yom and Bm about their correct values.

However, he does not use these expressions in the numerical computations.

5.3 Radiation of Sound from a Source Inside & Semi-Infinite Thin-Walled Tube

5.3.1 General Solution

The prohlem of scalar diffraction when the source of the incident field is lo-
cated inside the tube has been treated by Levine and Schwinger (1548) and indepen-
dently by Wainstein (1949) for the boundary condition -g—: = 0 (rigid tube).

We assume that the tube is located at p =a, z >0 and that a single arbitrary

mode is propagated in the negative z-direction. The velocity potential of this inci-

dent mode can be written as

J (3 8, -ia' z
(0) _ n nm a nm
= Anm RN cosnf e (5. 90)
nr. .
m 20 when n=0, m >1 when n>1

' = =i
where lel(jnm) 0, 0 ]"m < jl'll <... and

is positive or positive imaginary. The field inside an infinite tube for arbitrary ex-
citation can always be written as an infinits sum of cylindrical modes. The solution
176
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FIG. 5-5: THE AVERAGE PRESSURE ON THE END OF THE ROD DUE

TO AN INCIDENT UNIT PRESSURE PULSE. Vo IS THE SPEED

OF SOUND (Jones, 1955)
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tube is then obtained by summing up the contributions from all modes.
The total field due to the incident mode of (5.90) is

(" F )
21' cosaf _-(T)-'— m(m) , p>a
(xa)
u(p, §,2) = < " (5.91)
F (o)
u(0)+‘§!;coan¢ —ﬁEJ (xp)e “da, p<a
~ r

where, as before, ‘2 = kz-az and the path of integration is given in Fig. 5-1, pas-
sing above all real poles of the integrand when Rea < 0 and below them when
Rea > 0. We have

i , (k+a)M L@
Fn(a) 2 A (k+a' )M (a' ) _a_:;;— (5.92)
where the split function Mn(a), as before, is defined by (5. 35).
5.3.2 Field Inside the Tube

When p <a, z >0, evaluation of the integral in (5. 91) by means of residues

yielde ( 2 G, 8
)! -ia' z j! ila!
_ n nma nm () n'nta’ "ot
ulp, §, 2) cosnﬁ{J (j' +;le Jn(jn,z) e :}
(5.93)
where 2 2
' (k+a' M (o'
g® _ _Jmm Y 550
mm 4!(1,2 -n%) a!'

is the reflection coefficient of the incident mode and
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'2 L] ' 1]
(@ _ {&1 (k+a )(k+a M (a ™M n(anl) 5.95)
m! 2(];3 - nz) nz“”:'nf an'xm)

m¥ 4L

can be called the conversion coefficient of mode Amn into mode A "

We write the coefficients Rg a
(n)
i@
("’ In(“) mt (5.96)

The moduli and the phases of these coefficients for a symmetric incident wave
1 1 =
(Aoo' Aol) as functions of ka in the range 0 <ka <j 2 (jo2 7.016) are given in Figs,
5-6 and 5-7. The modulus of the reflection coefficient of mode A11 for
'1 <ka <j'12 (j'u =1,841, 3'12 = 5,331) is shown in Fig. 5-8.
If we introduce some auxiliary functions connected with the split,function, the
quantities in Figs. 5-6 through 5-8 can be expressed as

© |aReP®
|Roo|= ., 0<ka<j =3.832 ; (5.97)
and
IR(O) k+au elcaReP (k) IR(O) leac::nRePl(txn)
00 k-an k- an
a
0] . 2k 2[kRe P, (k)+a, RoP )|
ol k-an
2 s
2[kReP (k+a, ReP (o, )]
|R‘1(2 = — o2 1 11 (5.98)
11

for jc'>1\< ka <j‘:’2 ;
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FIG. 5-8: MODULUS OF THE REFLECTION COEFFICIENT FOR MODE A

(Wainstein, 1949). 1
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aa!,ReS (a!.)
|R(1) == '11 11 1711 R for 3 .<ka<j ; (5.99)
-a 12
11

6 +6l?

(1) _ ) _ (0) (0) 11
9y = kemP, K, O, =ac, mP ), ©,=86,=—3,
(5. 100)

where the functions P1 and S1 are defined by equations (5.222) - (5.223).
Using the approximate formulas (5.233) and (5.252) we find
|R(°’ [ Gea)® ( E)] , ka<1 (5.101)
71 12

where log'y1 = 0.5772 in Euler's constant, and

|R(0)\ V7R e ka( = (ka)> , ! <ka<j;, =3.832. (5.102)

At ka=1, (5.101) and (5.102) yield values larger and smaller respectively than the
correct one by about 3 percent.

If the incident mode is Aoo and the frequency is so low that all the higher
modes are exponentially damped, the field inside the tube for large z is given by

= A E'“‘zm(o) e’kz] . (5.103)
00 00

Equation (5.103) represents a standing wave of amplitude

o1 = 8,01 12 - 2| conma o 5.100

The first node is consequently located at z =-£, where

ot =00 (5.105)
00
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The length { is called the end correction and it determines the resonant frequencies
of cylindrical resonantors open at one end. When ka ~» 0 the end correction tends to
the limit

@

oy |

Q0
lim ':I = 'lza“""‘”‘n <‘J?(Txl) = 71r _121°g 21.( l)K G dx = 0.6128"
ka0 x 1% X ¥ 1

0 (5. 106)

The quantity £/a is plotted in Fig. 5-7, and some numerical values, together with
those of - L [R'], are given in Table V1.
ka 0o
TABLE VI

End Correction and a Function Related to the Absolute Value
of the Reflection Coefficient for Mode Aoo+

++
) a
ka t/a - ka t/a =

0 .613 0 .55 576 235
.05 .612 .0245 .60 .5T1 251
.10 611 .0485 .65 .565 266
15 .608 .0719 .10 560 281
.20 .604 .0948 .75 554 290
.25 .610 117 .80 .549 311
.30 .598 .139 .85 544 .325
.35 .594 .160 .90 538 .333
.40 .590 .180 .95 533 351
.45 586 .200 1.00 .527 .364
.50 .581 .219
* Wainstein (1949)

(0) © _, 2t

++ . _
The phase of Roo is given by 000 = 2ka 2

When ka > jl'lm' i.e. above cut-off, the power transported by the mode Anm
of {5.90) is

* This value was obtained by Brooker and Turing as reported by Jones (1955) and in-
dependently by Matsui (1961). Levine and Schwinger (1948) give 0.6133 and Wain-
stein (1949) 0.613.
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n jr'lm

where Py is the density of the surrounding medium, v, the velocity of sound and

€= 1, €, =€=...= 2 are the Neumann numbers. Thus, the fraction of the power
of the incident wave Anm which is converted into the mode A nt and propagated

3)
- <jj“‘ (“)lz : (5.108)

(n) (n)
ml Im

towards z = w is

From (5.95) it follows that

(5.109)

which is a consequence of reciprocity. The total power reflection coefficient for the

mode A is
nm f

i: (n)
= r (5.110)
1=0 m! 1

where the summation is taken over all propagated modes. In Fig. 5-9 the power re-
flection and conversion coefficients together with the total power reflection coefficient]
are given for the symmetric modes Aoo’ Aol'

5.3.3 The Far Field

If we introduce spherical coordinates (r,0,#) such that z=rcos6, p=rsin0,

and evaluate the upper integral in (5.91) by the method of steepest descent, we obtain
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the total far field”
ikr n alk+a' )}1+cos@)M (a' )M (kcos 6)
(-1)" am n

u(r,0,§) ~ Anccsnﬁ 2 o (l) (5.111)
8in6(k cos 9+a' (ka sin 8)
The power radiated per unit solid angle about the direction (0, #) is given by
po. B = 3o v K lufs? (5.112)

This quantity divided by the power of the incident Anm mode is called the power
pattern fnm(G, . Using (5.111) and (5.107) we get

Enl‘(k+ax'1m)2 an(a;mQ '2 (1+cos 6)2 IM (kcos 6)[2 9
fnm(e' P = > cos n

41r30e!'Im (1-—'— sin 9(kcosO+a' 2|H(1) (ka i.nO)lz

j'z (5.113)

where as before, € =1, €. =¢
o) 1 "2

fnm(e, #) and the power gain function, i.e. the radiated power related to an isotro-

=...=2 and ka > jx'im’ The relation between

pically radiating source, is

£ 6.9
G (M= —2(9-'-/% = 4 E‘;(n-)— (s. 114)1
rad l-r
m
where ri(;) is the total power reflection coefficient given by (5.110).

If we insert in (5.113) the expression given by (5.215) for Mo(a) = Ll(a), we
obtain

*As pointed out by Noble (1958), the sign for the far field in the directions 6 =0 and
=7 when n=m=0 as given by Levine and Schwinger (1948) (Eq. I, 12, 13) and
by Morse and Feshbach (1953) (Eq. 11.4.33) seems to be in error.
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J, (ka 8in 6)

1
f (6) = exp|ka (Re P, (ka)+cosORe P_(kcos )
00 wzam29|ﬂ(11)(ka sinO)' [ ( ! ! >]

(5.115)
when 0 <ka <j! =3.832, and

+a kcos6+a J,(ka8in@)
R lm 1
foo(o) T—‘- K-, n) (1)

72 mel 1m kc°‘”9""1 sin”6 [H,"(ka stn 6)

X expEta (Re Pl(k)+ cos ORe Pl(kcos Oﬂ (5.116)

when j!  <la <j! Sm +1) For the lowest mode with §-dependence cosnf) (also

including 9\ ) the corresponding expression is

€ a’l tan ;1 2 '(kasine)
£ (0, =" ; X
nl 9 IH(I)
2

(ka sin 6)

t
exp [a!'llRe Sn(an1)+ kcos 6 Re Sn(k cos 0]

X 2 > cos n
cos 0@ - cos enl
(5.117)}
|} t
when juI <ka < jn2 ,» Where enl is defined by
kcosh = -a' (5.118)]
nm nm

The power patterns of the mode Aoo for different values of ka in the range

0 <ka <4.023 is given in Fig. 5-10 and for modes Aoo and Aol for ka=4.023 in

Fig. 5-11. The power gain function in the forward direction (6 =7) for mode Aoo

is

LI enl 8 \2
The factor |\tan > / ta.n-§ is missing from the corresponding formula (Eq. 81)

in Wainstein (1949).
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FIG. 5-10: RADIATED POWER PER UNIT SOLID ANGLE FOR INCIDENT MODE

AOO CARRYING THE POWER 1 WATT. (Levine and Schwinger, 1948
(ka < 3.832) and Weinstein, 1949 (ka = 4.023))
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k32
(0)]2

G (7n) =
00 I'IR
00

(5.119)

This function is plotted against ka for ka < 181 = 3,832 in Fig. 5-12,

The exact power patterns of Figs. 5-9 and 5-10 can be compared with the
Kirchhoff approximation, in which the radiation field is calculated from the incident
field and its normal derivative at the open end.

The radiated power per unit solid angle for the incident mode Anm carrying
1 watt of power obtained from the Kirchhoff approximation is

inGJ'(kasinB)_‘

f:m(e’ ¢) = [:ose cos

41ra' 1-——

cos n¢ (5.120)
nm _J

where enm is defined by (5.118), If we compare (5.120) with the exact expression
of (5.113) we find that

€ kaa'
( nm.ﬁ) =fl:m(9nm,¢ - Q- >[I (j' cos n¢

(5.121)

The Kirchhoff approximation therefore gives the correct value for the radiated power
in the direction 6 -—-Onm (r/2< enm £ m). It also gives correctly the directions of
zero radiation if 9 > 7/2.

Y'rom (5.113) we obtain the special cases

3
§ (0) = kBl R(O)r m=01,2
om 4raa' mo P Ty R
om
(5.122)
fnm(O,¢) =0 n>1
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f (n/2,P) = ———— -—-—7—- R'Y | cos n (5.123)
nm 20 (1) (ka)] | B
'k.a.z
- 422
T (5.124)
fnm(‘lr.¢) =0 n30, m3>1

The corresponding values for the Kirchhoff approximation for the mode Aoo are

J (ka) 2

rfo(O) =0, fx(w/2) , f:)(z) = %’— (5.125)

£ (0), £ (v/2) and ﬂfo (r/2) are plotted against ka in Fig. 5-13.

For low frequencies the Kirchhoff approximation can be improved if we add
the reflected Aoo mode to the incident field. This modified Kirchhoff formula for
incident Aoo mode reads

2
J,(ka sing)
fK(G) 4 L > [1 cos 6) +|R(O)‘ (1+cose) 231n 6 Re (0)}]

T 8inf

(5.126)

A comparison with (5.122) shows that this expression yields the correct value not
only for 6 =7 but also for 6=0. A comparison of the exact and approximate power
patterns for ka =1.0 is given in Fig. 5-14,

As our problem is self-adjoint, there is a reciprocity relation between the
results of this section with those obtained for scatterirg of a scalar plane wave iu
Section 5.2. The principle of reciprocity can be stated as follows, To the incident
mode Anm of equation (5. 90) we relate the far field cos nf # gmn(o) and from an
incident plane wave given by (5.59) \i.e. propagating in the direction (91, 0)) we
assume the excitation inside the tube to be
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Sy Jn(jr!lmﬁ) i"'xlmmz
uip, §, z) =§ E B , cosnf e
— L "nm J (3! )
n=0 m=1 n - nm
Then
n 2€n”x'xzm
A B.= (-1) 53 2 gnm('lr-ei) (5.127)
(' -n)a o
nm nm

It is readily checked that (5.127) conforms to (5.65) and (5.111). It may be noted that
if we want to use the principle of reciprocity to calculate the field at an arbitrary
point inside the tube due to an incident plane wave, we must know the far field ex-
cited also be all evanescent modes. Equation (5.111) is stili valid for a mode below
cut-off, but the quantity fnm(e, #) of (5.113) has lost its physical meaning as there is
no energy transported by the incident mode in that case.

For ka <1,841 the absorption cross section for an incident plane wave, de-
fined as the ratio of the power transmitted into the tube to the power incident per unit

area, is related to the power pattern of mode Aoo by
¢ 6) =22t (r-6)) (5.128)
a i 00 i :

where A = 27 [k is the free-space wavelength.
5.3.4 Cylindrical Resonators with an Open End

We assume the resonator to consist of a tube of length L closed at one end by
a rigid wall and open at the other end (Fig. 5-15). The resonator is excited by a
plane wave propagating along the positive z-axis

(0) ikz

u = Ae . (5.129)W

If we neglect all higher modes, the field inside the tube is represented by the mode

Aoo alone, reflected with reflection coefficient 1 at the closed end and with reflec-
(0)

tion coefficient Roo of (5. 94) at the open end. Summing up all these traveling waves
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FIG. 5-15: CYLINDRICAL RESONATOR WITH AN OPEN END.

we obtain the velocity potential

RN eik(ZL -z)
uz) = A 9KL (5.130)
1-Re
As a measure of resonance we take the quantity
- !.L_)l
g l 9A (5.131)

which is equal to the ratio of the pressure amplitude at the closed end to the prcssure
at an infinite plane screen located at z =L. Introducing the end correction ? defined
by (5. 105) we obtain

g = . (5.132)
Q1+ |R|§+2|R| cos 2k(L + £)

Fig. 5-16 shows g as a function of ka for a resonator with L/a = 7.82.
5.4 Scattering of a Plane Electromagnetic Wave from a Semi-Infinite Thin-Walled
Tube
5.4.1 General Solution
Let the semi-infinite tube occupy the space p=a, z 20 and the incident pM

wave be given by
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- L/a =7.82
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FIG. 5-16: RESONANCE CURVE FOR A CYLINDRICAL RESONATOR WITH
LENGTH TO RADIUS RATIO 7,82 (Wainstein, 1949)
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N ~ A ik(x sin81+ 2 cos 6‘)
= (-cos Oicosﬁlx-i- slnBiy-P- smﬂicosﬁiz)e

{ 'eo . R n ik(xainei-i-zcosei)
H = ;.' (-coseislnﬁlx—cosBiy+ slneisinBlz)e

(5.133)

i.e., its direction of propagation is parallel to the (x, z)-plane and makea an angle 9l
with the (y, z)-plane. The configuration is given by Fig. 2-2 with 61 exchanged for o/
The problem has been treated by Pearson (1953) for the special case 8=0
(incident TM—wave)*I and by Bowman (1963a, b, c, d) in a series of unpublished memo-
randa. Its solution is, in principle, given in Section 5.1 as soon as the functions
fn(a) and gn(a) of (5.42) and (5. 43) are determined from the incident field. Inserting
x=pcosf in (5.133) and using

@
ikpsineicos¢ n ing
€ = i Jn(kp sinﬂi)e (5.134)]
n=-o
we obtain
i ikzcoae1 © n ing
E_(a, p,z) = sinf cosp e E i Jn(kasm.ei) e
==
(5.135#
i i.kzcosei Z cos @ cosB
E¢(a, $,z) = P me an(kasinGi)+

n=-e

+ isinBJ;l(ka sin Oizl i em¢ .

From the definitions of fn(a) and gn(a) in (5.42) and (5. 43) we get

* The sign after 1 in the quantity Nn(ik) defined in connection with equacion (2) in
Pearson's paper seems to be incorrect.
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2lnainBJ'(kasin9 )
n Mn(k cos® 1)(a -kcos@ i)
(5.1306)
21%sin 8J" (kasin )
f+(-k) = T 1
n M (kcoe8,) k{1+cos@8,)
n i i
n+l
_ 21 “sind [cos pJ (kaainG )
gn(a) = ka(1+cosoi)Ln(kcos 91)(01 kcosei)
(5.137)
n+l
_ 2i cosBJn(kasmel)
gn(k) = 2

k asin eiLn(k cos 91)

where Mn(a) and Ln(a) are the split functions defined by (5.33) and (5. 34). Inserttngl'
(5.136) and (5.137) in (5. 44) and (5. 45) and putting Fn(a) =G _(@)::0 yields the solu-
tion to the problem. In accordance with (5,55) and (5.56) we write

Q
x(pn p: z) = Xi(P. ”; Z)+2L" Z em E(Q)H(l)(px)"'B(a)H(l)'(pK iazda '
e r (5.138)
p>a, -0<z<®
¢ ]
X(Pa ,n z) = xi(P. ¢. Z)“"E:-r' Z-‘D 9m¢ g l}(a)Jn(px)*'B(a) Jx'l(PK) eiaz de

Jpr (5.139)

p<a, -0w<z<w

where as before k = Vk -a  and the path of integration [ is as indicated in Fig.
5-1 with the addition requirement that it passes below the pole a =kcos 9 X stands
for an arbitrary component of the total field, and X is the corresponding component
of the incident field. The functions Ax) and Ba) are given in Table V if we take
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e (a) € (a,a)
bla) = (1!;, , cla) = %')'—'— when p >a
H ' (ax) H "'(ak)
n n
(5.140)
e_(a) ¢ (a,a)
__n L —zn
bh) = J'(M) » C(a) J (a‘) Whﬁn P <a
n n
where, from (5.44) and (5.45) and (5.136) and (5.137),
) n { 2akn Ln(k) “2lacosf Mn(k) Jn(ka sin 61)
e @) = 1 alk+a)M (a) - -
n n 4k2a2Mi(k) ) nzLi(k) L sin Oan(k cos 9 i)
nsinBL (k)J'(kasin@,) asinBJ'(kasin 8 ) k-a)
- a__ D LYy, 2 d (5.141)
k(1 +cos ei)Mn(k cos 01) Mn(k cos 61)(0 -kcos 61) )
2akn L (k) incosBL (k)J (kasin®,)
€ nlma) = ‘nl‘n(“){ NN ( T - -
4k a Mn(k)- n Ln(k) ak sinGiLn(kcos Gi)
2sinp Mn(k)J;l(ka sin Oi) icos Bsin Oi Jn(ka sin 91)(k +a)
k(1 +c088))M {kcos9,) * Hi+cos 6L (Kcos 6 ) - kcoad)

(5.142)

As a special case of (5.138) and (5.139), the curreng flowing in the wall of the tube is

given by
—Jp(ﬂ. z) = H (a+0,$ z)-H (a-0,0,2)
[0 ¢) -
€ e ()
B S Z einﬂ — n RELIW (5.143)
TV 2o 2’ kx*M_()M ()
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jz(ﬁ. z) = Hp(a-" 0,p,2)- Hp(a- 0,p.2)

o)

Z inf C« naey@) k€pnl® @) > foz
e - e do .
)
rl

0 n=-0 4a4Mn(a)Mn(-a) mcz Ln(n)Ln(-a

lo

]
a3 [
=

(5.144)

5.4.2 Field Inside the Tube
For the interior of the tube, i.e. p <a, z >0, the integral in (5.139) can be

calculated by means of residues. The contribution from the pole a =kcos@ A cancels

the incident fisld and we obtain the Hz and Ez components of the total field expressed
as infinite sums of TE- and TM-modes respectively:

e ) ® ing Jn(j!'lmﬁ) ia;lmz
H(p,$,2) = E_ E_ A TG0 ® (5.145)
n=- m=1 n nm
[+ 1) a0 P
J (3 ) oz
in n'nma nm
Ez(p, §,z) = 2 E_ B e 4 T e (5.146)
n=- ms= n - "nm

where as before Jx'l(j;lm)-— 0, 0 <jl'u <Jg<...

Y= 4
Jn(jnm. 0, 0 <]n1 <jn2 <..

are positive or positive imaginary. The constants Anm and Bnm are given by

€ e (a' )

0 n nm
A = o |-

nm u 2
o kaSQl ( - _9—
am

(5.147)

2
'
jnm
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and
€ (a,a )

B = .2 20 0om . (5.148)

aa
nm

The remaining field components are readily obtained from (5.139) in the same
manner, or by Maxwell's equations, from the knowledge of Hz and Ez. Specifically

the surface currents on the inside of the wall of the tube are

jpip 2 = Ha 2 = ii A oo om

n=-oc m=
(5.149)
© T‘n—; naa la' 2
o = ma = D D o (—pma
n=-o m=1 J'

ia z
-1 ‘_0 j_k‘; B e om >
“o nm n
5.4.3 The Far Fileld

When kr sin29 >>1, where r,0 are spherical coordinates such that p =rsiné,

z=rcos 8, the integral in (5.138) can be estimated by the method of steepest descent|
When 6 >9i we have to cross over the pole a = kcos ei to deform the contour of in-
tegration into the path of steepest descent. The coatribution from the integral along
the path of steepest descent when 6 #6 i is given by (5.58) and for 0 >9l the residue
at a=kcosf i yields an additional term which removes th: reflected wave X'. Asin
the scalar case we use the method of Vander Waerden (1951) to obtain an expression
continuous at 8 -‘—'91 (cf. Section 3.2.4). We write the Ez and Hz components of the
total fields in the far zone krsin 60 >>1 as
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i
z eikr eikr cos(6 - Oi)
H ut +UE,H(9‘¢) r -H(el-e)AE,H(m Jkrsing
z

1
+3 sgn(ei-O)AE‘ H(¢) T(r,8-6 ) T= (5.150)

where
1 = w1 6; (a, kcos @) ing
ue.9 = < Z -1) ( ) e (5.151)
(ak 8in8)
4 ®
-i= sin6,J (kasine)
2 4 i i inf
A_(p) = \j':e cos B e (5.152)
E T nz:o (1)(ka sinf )
and
o0} -
€ e (kcos#8)
e = 2 =2 Z(-i)“ oy & (5153
"o n=-m (ak) sinOH (ak 8in 0)
€ 5 -i sine J'(kasine) ing
A (P) = \/z J:e sin B ; e ' . (5.154)
H Ko 17 Z ()(kasine)

The functions H(Or 6) and sgn(ei— 8) are the Heaviside step function and the signum
function defined by (5.80) and T(r, 9-91) is given by (5.81). If 9 >Bi, i.e. the ob-
servation angle is outside the domain of cylindrical waves, the scattered field is a
gpherical wave givea by
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s
Eo(r, 6, = %o H; = -—Ez ~ - U——E(e'm Pl
e’ €, ¢ sin@ sin@ r

(5.155)

8
Es(r e ¢) = . ‘_‘2 Hs - _“_0 Hz ~ -“_0 UH(G» ¢) eikr
g €, 0 € sin6 €, sin6 r

In the negative z-direction, i.e., 8 =7, we can still use (5.155) in spite of the fact
that the condition kr sinze >>1 is not satisfied. In the sums for UE and UH only thew

terms n= 11 will contribute and we get:

m ik|z | 2ia cos BL, (k) J (kasiné )
EN0,0,2) = - [ H ~ e|zT T 21ﬁ 1 i (5.156)
o Y Ek a Ml(k)-Ll(k_Z] sinOiLl(kcosoi)
2
s B . emtzl 4ika” sin M, (k) J} (kasin0)
E0.0,2) = | H ~ - F23.3 2
y 0 Ek a Ml(k)—Ll(k-)](1+cos Oi)Ml(kcosei)

(5.157}

as as z->-m. Along the outer surface of the tube, p=a+0, the fields when z—~>am
can be estimated from the integrals of (5.138) by deforming the path of integration in
the upper half-plane into a U-shaped contour around a branch cut from k to k+ic.
The symmetric term n=0 is dominant, and due to the boundary condition the com-
ponents E¢, Ez and I-Ip of the total field are identically zero. For the remaining

components of the total field, representing surface charges and surface current, the

results are:
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ikz cos 6 1cosBcose
E(a+0¢z)~-%e iE {8 glnf T +
n=-m kasineiH (kas:lne)
. nsigﬁ > ) 21cosBJ°(ka sin Oi)Lo(k) eikz
(ka sin6) Hu)(kasi 0) kasind,L (kcos6,) n—22- 142
v, ka
(5.157)

u ikz cos @
J_:H¢(a+0 $,2) A -%r! 1 Z n m¢( icos f +

=-00 ka sin@ H(l)(ka sin@ )

nsinfBcosf
2 (1)'

i
(ka sin Bi

. > ) 2icosfBJ o(ka sing@ i)Lo(k) eikz
)

(ka 81n 6 ) kasineiLo(kcos 91) 2z _1§r

0
“ ikz cos 8 Z
;2 Hz(a+0, ¢' Z) ~ _21?1 e i inem¢ SinB

(1)' . -
() n=-a ka Hn (k2 sin 91)

(k) sin 8 J' (ka 8in@,)
- C-l 2 i +ke-(k)ei¢+ke- (k)e-w) L
L 1 -1 k22

1(kc:os 91)(1 - co8s 61)

a8 z-~>o, where in 71 = 0.5772156649... is Euler's constant. The terms contain-
ing the summation over n from - to m are the fields pertairing to an infinite
cylinder (cf. equations 2.41 and 2.42).

5.4.4 Axial Incidence

The case of axial incidence, i.e. Oi=0, is of some interest because in that

case the sum over n only contains the terms for n= *1. Thus, we need to know
only the split functions Ml(a) and Ll(a) (= Mo(a)) to solve the problem.
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The solution is obtained as a special case of the previous results if we put
;91 =0, It is no restriction to assume the incident field to be polarized in the x-direc-
tion, i.e. the incident field is

(5.158)

The components of the total field are then

“€ (a,00 B (o ) e H Dcp)
E (o,9,2) E +1 cos § ' 4o
preh p T [ (1) (1)'

r (xa ) a px (xp)
T ( e B () ot (a,a) n‘”(xp)> .
E p,p,z) = E; +— sin : - e da
p p 222 (11) (xa) px2 (1)( )
(1)(KP) i
Ez(p, ,z) = 6 ,(a Q) ——— (1) Z da (5.159a)
rl
¢ L L g € a8 o) aejle) B (ko)
H(p,f,2) = H + [— = sin - : X
p o BT - ple-l(l)(xa) azkxz H(l)( xa)
X emz da
; [T L g €, ean k)  aej H(l)(xp)>
H,(p,9,2z) = H;+ |— = cos - - X
p g Bow - xH(l)(xa) oa k (1)( )
xeiaz de
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T sinp | &@ H(11)("‘” laz
H(p,p,2) = - |2 5 T e ' da (5.159b)
2 "‘o 4 Fa kx !-I1 (xa)

wher p >a, where eI(a) and C;I(a,a) are obtained from (5. 141) and (5. 142) by put-
ting n=1, 91=0 and 8= 7. Thus,

) 2a"K°M, ()
el(a) = (k+a)M. () |
1 4k2a2M2(k) Lz(k) 1
(5.160)
_ aL (k)
¢ (a,a) = L (a) .
21 4K 2M2(k) L2(k) !

The field components for p <a are given by expressions identical to those of (5.159)

]
with H(l) and H(l) exchanged for Ju and Jl'1 respectively.

The H and Ez components of the field inside the tube (p <a, z >0) are

i eftal ) I G E) ia' z
B Go.8,2) = -2 _m} i1 Dnal “in®
z kaa' (j' -1) 1¥1m
(5.161)
w . Jo)
Jlmc;l(a’alm) Jl(jlm a) i".'!lmz
Ez(p,ﬁ,z) = -2icosf T0.) ©
= a«a 1"1m
The far-zone scattered field is
s B g 9 e1kr 6 (a,kcosO)
E, = pe H¢ ~ T ) cos
o smGH (ak 8in 9)
- (5.162)W
s A, 5 2 ei.kr e (kcos 8)
Eg=-\< Ho ~ 7 2(1) sinf
o (aksin8)”" H. ' (ak sin0)
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when krsinze >>1. In the back scattering direction 8 =7 the polarization is the
same as that of the incident field, and from (5, 156) we obtain
ik|z |

2
8 (] ia k
E (0. 0. Z) ~N -
x |zl 4k2asz(k)- Lf(k)

, 2 —»-m (5.163)

Along the outer surface of the tube the asymptotic forms of the nonvanishing compo-
nents of the total field are

A we ([ a? 2 MHOYLI0DY
BpetOhm) ~ o Hyar0.hia) veonf e (145 —ggs )

a’a M0 - Lf(k)
T BiaskSM?(k) ikz
Hz(a+0,¢, z) ~ -sinf T T332 =5
o 4k

(5.164)
a?M2w) - L2
1 vz

5.5 Electromagnetic Radiation from a Sour. : Inside a Semi-Infinite Thin- Walled
Tube

5.5.1 General Solution

We assume that the tube is located at p =a, z >0 and that a single waveguide
mode i8 propagated in the negative z-direc‘iva. The incoming mode can be either a
TM mode with the axial component of the electrical field strength

i I G 2 -la 2
E =E . ———LJ, G ) o°8 nfe (5.165)]
n nm
or a TE mode with the Hz-component
Jn(jl'ml ﬁ) -la) 2
. = Hnm 'J—'GT-—)—' cosnf e (5.166)
n ‘am
n30, m>1
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where Jn(jnm) =0, 0 <jnl <9 <-
: ] = t t
Jn“nm) 0., 0<jn1<jn2<"'
and
a = ' a =
nm nm

are positive or positive imaginary. For arbitrary excitation inside the tube we have
to calculate the field in a corresponding infinite waveguide at z =0 expressed as an
infinite sum of waveguide modes and then sum up the results from each mode.

The problem has been studied indetail by L. A. Wainstein (1948¢; 1950a, b).
We can obtain its solution from the results of Section 5.1 by proper choice of the
functions fn(a) and gn(a) in (5.44) and (5.45). For that purpose it is suitable to de-
compose the total field into the field obtained from the surface current at p =a,
0 <2z <, connected with the incoming waveguide mode, plus the scattering of this
field from the semi-infinite cylinder. For the scattering problem so formulated the
expressions of Section 5.1 are directly applicable and

23
WM K a

i —
en(a) = H Mn(a)Mn(-a)

nm 2¢ at+a’ )
n nm

(5.1671
2 2

1 i“23‘2 K a ax'1m+ jfma
Eizn(a.a) = -3 Ln(a)Ln(-a) {l;nm 3-—(;-;-0———) +anm }
n nm nm )

2
we ' (@+a'
o'nm nm

where €= 1, €, =€=...= 2. The only singularities of e;(a) and t;n(a) are at

a = Tk, Inserting the expressions of (5.167) into (5.42) and (5.43) and separating
the result according to (5.7) and (5. 8) we get
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wu aM (@' )
Q n nm

@+a' )
nm

cnfn(a) = Hnm

wH 8 [Mn(a;m) - Mn(kz'

+
e f(-k) = H
nn nm

k-a'
nm
(5.168)
fatk+a )L (a ) nkL_(k)

€gl) =-E A0 om gy 2
n'n nm j _{a+a ) nm awe (k+a)dk-a' )

nm nm o nm

_ i aLn(anm) nLn(k)

80 = -E bom - Hm 2awe (k-a' )

The quantities e;(a) and ﬁ;n(a, a), related to the Fourier transforms of the tangen-
tial components of the total electric field strength at p=a, -0 <z <0, are obtained
from (5. 44) and (5. 45) on putting Gn(a) = Fn(a) = 0. We write an arbitrary compo-
nent of the total field as

X(p, B, 2) = El;r- E(a, ¢)H2)(px)+ B(a, ¢)HL1)'(pxﬂ L da , (5.169)
F
p>a ~m<z<wm
i 1 iaz
X(p,p.2) = X'p,§,2)+ 5= E\(a, $)J_(px)+ Bla, ¢)J;l(px£|e da ,

(5.170)

p>a, -®<z<wm

where as before x =\}k -02 and the path of integration I” is asindicatedin Fig. 5-1.
}'(l xtands for a component of the fields of the incoming waveguide mode and the func-
tions A(a, ) and Blx, ) are given in Table VI if we define
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35
2k a nM (k)L (k)L (@)
n'n n om
PE(a) = ] N (k+a)Mn<a)

a2k Lz(k) N

M
’ o 3 . k-a n
PH(Q) \e ® an(anm) <2(a+ a' ) (k-a' )N) (k+ Cl')Mn(a)
o nm nm

(5.171)
2 (k+a_)ic+a) o’k L2()
Qgla) = 1 Lyl ) 2(&7«'3“) TR L

n om
nm

2 2
k 2aknL (KM (KM (@' )
o n_ o n nm
Qe = -5 (k-a' N Lyle)
(o) nm

where N = 4k232Mz(k) - nzLi(k).

As a special case of (5.169) and (5.170), the cur. ent flowing in the wall of tne
tube is given as

-j¢(¢. z) = H (a+0,4,2)-H,(a-0,9,2)
~la' 2
= -H__cosnffe " +
nm
. ’.G_Q i HnmPH(a)cosn¢+EnmPE(a)inn¢ Joz
u 3 2
o mak Jr K Mn(a)Mn(-a) ¢
(5.172
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TABLE V1l
Relation Between the Field Components and the Quantity X
of Equations (5, 169) and (5.170)

X Ala, §) Bla, §)
-n ' a
Ep p—xaa—z [i)E(a)cos n¢-bH(a)sinn2] = @ cosnﬂ-cﬂ(a) ainna
E = [c (a)cosnf+c (a)sinnﬂ] —l-[b @)cosnf + b_ (a) sinnﬂ'
p| 2L E 2.2l E s
E, -1 EE(a) cos nff - cy@) sin n¢] 0
we n
Hp —p—:lz- E:H(a)cos nf+ cp@) sin n¢] -:232 [bH(a) cos n¢+bE(a) sin nﬂ]
- we
H¢ pﬁ%} E;E(a)cos np - bH(a) sin nE] -K—°[cE(a) cos nf - cH(a)sinnﬂ
o
i
H —— | b, (@) cos np+b_(x) sin np 0
z o “2[H E :]
0
where @
E__P_(a) E P
byla) = %‘;——‘5— bgla) = ~FB—2— W
H (ax) n
H P _(a) H P _(a)
_ _nm H __mm H
by = —qy bg@ = @
H '(ax) n
n for p >a > for p<a
_ Fop¥r® _ Ean%®
g@ =~ ) £% 7 T ()
H (ax) n'3%
o o) - —amdu?) o (o) = —om
H H(l)(ax) H Jn(ax)

n

213




where

1,82 = H,(a+ 0,§,2)- np(a-o, f,2)

dues,

G L) -ia__z 3 0 Ly a2
= g _DOma_ o om § nE ‘n"nta nt }
Ez(p,ﬁ, z)= E 08 uﬂ{ J,',(j e + R 7 )~ © +

G L) -tz =2 JG',2) a2
H(p.ﬁz)-H cosﬂﬂ{g:j‘?‘a m+ZR$-}.’l‘_§_e nt +

THE UNIVBR%S{}'TOF MICHIGAN ey

€ ka -a__z naa' -a' 2z
=2 fp  cosnpe "™ +—22H sinnpe "™ +
uoi) nm 2 n
0 ’‘nm “nm
+\/?_: 1 [na[ﬂg_fl’u(a)smm-EnmPE(a)cosnﬂj )
M ma 3, 4
o X a kx Mn(a)Mn(-a)
k|H Q.la)sinnf-E__Q_(a) cosnd
+ [E “2 —om E ! e “®da . (5.173)
[ Ln(a) Ln(-a)

5.5.2 Field Inside the Tube

When p <a, z >0 the integral in (5. 170, can be evaluated by means of resi-
Thus, the Ez and Hz components of the field can be written as

=0 nOne

G io_,2
+H sinn¢ iTm: ;'(;11 e ™ (5.174)
nl

1=0 n(jx'l.l)
© 2 '
J ('. =) ia',z
+E sinn¢z T e (5.175)
1=0 n
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nk
rR"E - -anE Ome ; nt Q..(a
m! mt - aza E ot
nt
nH
ie € )!
rAH - |RnH e ™ _ 10 nf - P @ )
mi mi y H nf
k ' (jn
] {(5.176)
nH nd
Tml a2 QH(a )
“nt
€ j'2
E__|»o nt ,
T = 5 3 z_2 Pplagy
o a ka' (jnl

For symmetric modes (n=0), T::: = Tguu = 0 and the reflection and conversion

coefficients are easily expressible in terms of the auxiliary functions Pn(a) and sn(a),

connected with the split functions, of equations (5.220) and (5.225). Thus, for the

reflection coefficients we have

k+a aa . Re Po(aol)

oE| _ ol ol
IRu “k-a . °®
ol
j ,<ka<]j (5.177)
E = ImP (o ) ol 0z
@0” = 82, E %0
11
oH aanRePl(all)
'R e
juskaqlz (5.178)ﬂ

oH _
611 = aauI.mPl(all)
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L Laadarie

Approximate expressions for the reflection and conversion coefficients of arbitrary
Enm or Hnm modes can be obtained using the function U(s, g) defined by (5. 258).

L The absolute value of reflection and conversion coefficients of the symmetric modes
Hol‘ H 02 and of the reflection coefficient of mode H11 as functions of ka in the
range jil <ka <183 (ji1 =1,841, j83 =10.173) are given in Fig. 5-17 and the cor-
respondin, phase functions of symmetric modes Hol’ H‘)2 are shown in Fig. 5-18.
The absolute value and phase of reflection and conversion coefficients of symmetric
modes Eol' Eo2 for jol <ka <j°3 (jol = 2,405, 103 = 8,654) are shown in Figs.
5-19 and 5-20.

When the incident mode is E . and j . <ka <j ,, or whenitis H . and
o ol 02 n

1 1
j:)l <ka< jéz, n=0, or jt'11 <ka < jnl’ n 21, the only undamped mode traveling in
the positive z-direction is the reflected incident mode. For large z the z-depen-

dence of all components of the field is given by

~thz 4 o ihz

Z(z) = e (5.179)

where h is the wave number of the incident mode and R is the reflection coefficient
given by (5.176), Equation (5.179) represents a standing wave of amplitude

|z(z)| = (1+ln|2’_’ 2|R|cos(2hz+@) . (5.180)

Thus the first node ox antinode is locaied at z = -£ where

_ aOE J
2a011 = 911 (5.181)

for an incident Eo 1 mode and
20;111 =0, (5.18.,

for an incident Hnl mode. As in the scalar case we call the length £ the end correc-
tion related to the pertinent mode. In Figs. 5-18 and 5-20 the quantity ¢/a is plotteq

or incident modes Hol and E01 respectively.
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There exist some symmetry relations for the coefficients Rnl" Rl::;, Tg,

m‘l
Tn'H. From (5.171) and (5.176) we obtain

md
a a
nmRnE - o RnE
j2 Im 12 ml
nm nd
2 2 2 2
“m’aam )R“H A il r°H (5.183)
4 Lm 4 m! '
jnm jn!
2 2
a ) .’iQ al':.l(jt'ﬁ_n)TnE
2 Im € 4 md
Jam o i

Furthermore, for symmetric modes (n=0) and ka 3 jom >j ot

oE, _oE
e, +0
OE _ _oE _ M mm
o!m =0 B (5.184)

oH
The same relation is true for em if ka >j<')m >30,

The power flow connected with the modes of (5.165) and (5.166) if ka > jnm or

pE ) iQ waqkanm IE ‘2
nm P j2 nm' ’
° nnm

2 2
1] | -
H H, 1ra4ka G n) 2

P = 1
nm eo 2€nj :':n l ‘nm'

(5.185)

Pf ka > e’ j ;:s the fraction of the power of an incoming undamped Enm mode con-
verted into the E ot and Hns modes respectively is
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OE _ jnm nt I nEl
mi J !
nt%om
2 2
nE =_“_o Jam® x'm(j;xs'n) ok |
ms € ms

°  s%m

Similarly, the fraction of the power of an incoming undamped Hnm

]
into the Hnl and Ens modes respectively if ka > l'jns i

nH j' av (j' _n) h
r =

m{ 4 ’
JM nm(j'
4
nH eo j;xmans nH 2
tms = ;_ 2 2 2 Tms
° J 59 (jr__-n")
Ueing (5.183) we see that
rnE = rnE
im mi
rn}l = rnl‘l
Im mi
nE nH
Ym = ‘me

The total power reflection coefficients of the modes Enm and Hnm

THE UNIVERSITY OF MICEIGAN

(5.186)

mode converted

(5.187)

(5.188)

are
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where the summation is to be taken over all undamped modes.

5.5.3 The Far Field

We introduce spherical coordinates r,6 such that p=rsin8 and z=rcosé
and assume that krzsinza >>1. The integral in (5.169) can then be estimated by the

method of steepest descent. According to (5.58) the result is

“O Ez
Ee(raea¢) = ;; H, = ‘;—in_e

~ —°
#8iné H:ll)(ka sin @)

(r.O h = - € slne
J o

~ é%), E{ PH(kcose)coan¢+E PE(kcosO)sinnG:]gu—u. .
#(kasin6)°H" ' (kasing) = "™ w d

ikr
I:E anE(k cos 6) cos nf - HanH(k cos 6)sin nﬁ]gr— .

(5.190)

Lt

Equation (5. 190) is still valid in the negative z-direction (8 = 7) in spite of the fact
that the condition krsmzo >>1 is not satisfied. It is readily checked that the far
field of order 1/r in that direction vanishes except when n=1 in which case the re-
sult is

(5.189)

L
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i oL, L0 k2]
E (0,0,z) = -|— H ~-E
x ' € 'y lm 2 12|
\J 0 2), [a’a Ml(k)—Ll(k__)]
(5.191)
33, .
€, k"a"M, (@) M, (k) euclzzl
H(0,0,2) = [-2E ~-H k-a E‘ 22 2 2@ |z]|
o ( -alm) k'a Ml(k)-Ll(
z2—9»-0©

When z tends to infinity along the outer surface of the tube (p =a+0) the integral in
(5. 169) can be estimated by deforming the path of integration into a U-shaped contour
around a branch cut from k to k+im. The asymptotic behavior of the nonvanishing
components of fields representing surface charge and current so obtained are, for

n=0,
fkaL (a )L (k)
E (a+0,2) = '—H ’VE eikz
w2 G +13)
om

2 '
ka®Ly ! )L (K ikz

+a' 2
2(k aom) z

(5.192)]

H (a+00 Z) ~ -H
Z nm

as z-—» o, where ln'yl = (0,5772156649... is Euler's constant. For n 31 we have

0™ L oM (0 ke

u 2
E (a+0,0,2) = /—OH ~ € —x
P o # (n-1)! ElkzazMz(k) - I J(k.z] 2

2ka M (k)L @ ) u oM (a' )L _(k)
X E: 800 cosng+ |2 H 808 sinng
nm \’ €, om

l ot
nm kanm

(5.193a
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n-1 2n+2 n+2

22%(y) L (M (k) ke

X
(a- 1) [ak%a’M200 - nsz(k] 2™

2
aM (a'_ )L (k) 2ka M (k)L (@__)
X E!nm AAM_B__ . osng - ;2 E e sinn£|

H (a+0,8,2) ~

k- a;im o nm jnm

(5.193b)
as z-»m,

By a well-known formula, the field outside the tube can he expressed as a sur-
face integral of the field components over the opening and the outer cylindrical sur-
face. In the Kirchhoff approximation the field over tne opening is assumed to be that
of an infinite waveguide and the field on the outer cylindrical surface to be zero. It
is readily shown that the field obtained from this approximation (in Kottler's formu-
lation, cf. Stratton (1941), p. 468) is identical with the field calculated from a sur-
face current in the wall of the semi-infinite tube equal to that of an infinite waveguide.
Thus, the field of the Kirchhoff appruximation is what we called the "incident field"
in our formulation of the problem as a scattering problem. The components of this
field are obtained from (5.169), (5.170) and Table VII if we put P (a) = 0 and define
P (a) QE(a) and QH(a) such that

Hnmpg(a) = ene;h)
(5'194”
H QY -1E Q@ = e & (a,a)
nm 'H nm 'E n zn '

where e;(a) and Cin(a,a) are given by (5.167). Thus the far field according to
(5.190) is
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2,2 2
El;(r, 6,8) ~ 8 k sin 6

T (koosbrg ) o+
nm nm

(-p™t 3 (kastno)
28inb om

T azka' ain26+j'2 cos 9 ikr
+ [=2H 20 = sinnp| =—
€ nm 2 r '
o j'" (kcos@+a' )
nm nm
(5.195)
" 7 (0" kad! (kasing) kr
E¢(r.9. ) ~ ;; 2(kc086+a;m) Hnmcosnp—r—

Comparing (5. 195) with the exact expression in (5.190) v e find

-1 3
O a%ke J1G_) ikr

K nm n nm
Ee(r, CIN # ~ Ee(r,e ) ~

E__ cosnf =—
nm r

2jnm

n+l 3 2 2
‘ ' K ’ﬁ 0" "a'key G -0W ()
E¢(r, 0! o ) E¢(r. o §) ~ . n

2j;m

(5.196)

X

eikr
X H cos nf —

where 6 and 8' are defined by
nm nm

kcosé = -a
nm nm

(5.197)
kcosf' = -o'
nm nm

The power radiated into a unit solid angle about the direction (9, ) is

€
o, P = %\/;-:- QEG|2+IE¢|2>r2. (5.198)
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We call this quantity divided by the power of the incident E or Hnm mode the
power pattern fE (6 #) and fH (0 #) respectively. Thus, using (5.185) and (5. 190)
we get

€ j2 QE(kcosa) 9
£ '8P = 0 cos nf +
x a4ka sanH (ka sin 6)
P (kcose) 2 P
+ 2 (1), sin“nf ,
(kasin6) "H "’ (ka sin6)
(5.199)

fH €, enj 4 (k cos 0) 2

6.9 = — sin nf +
nm Ko 7r3a4'ka' (j'2 -n2) sinGH(l)(kasinO)
nm “nm
2
P (kcosO) 2
+ o ' cos n
(kasinO) H (ka sin 8) )
From (5.196) we see that
€ ka
_ £K _ . n 2,. .
t-Em(eum’ 0) = flil:m(enm: 0 = a7 n (Jnm) ka -Iim
(5.200)}
2 2
€ ka j' -n
- . nm 2 o
i © = O O =~ B 300 Wi
Jam
where as before € =1, €, =¢,=...=2. Thus for E modes the Kirchhoff
o 1 2 nm

approximation givee the correct value of the radiated power in the direction (Om, 0)
where 6, 7 /2 < 8 <7 isgivenby (5.197). If another mode E qe C2D propagate]
undamped in the waveguide the power pattern vanishes in the direction (6 nt’ 0) which
also is correctly given by the Kirchhoff approximation. The same is true for Hnm

modes in the directions (Ol'lm, 0) and (9;11, 0) respectively.
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The relation between fnm(e. f) and the power gain function, i.e. the radiated
power related to an isotropically radiating source, is

£,
= ) = JAm
G _(6,¢) = -’;EL‘% = 4n — (5.201)
nn rad 1--rm

where rn is the total power reflection coefficient given by (5.189). The fraction of
the incident power which is radiated into the space outside the tube for H mode is
l-r 1 IROH 2 when j(')1 <ka <j;2. This quantity is shown in Fig. 5 21 as a

function of ka/j B 1 compared with the result obtained from the Kirchhoff approxima-

tion.

The power pattern for modes Hol' E01 and Hll are shown in Fig. 5-22, to-
gether with the results from the Kirchhoff approximation.

When ka >>1 we can use the function U(s, g) of (5.238) to obtain an approxi-
mate expression of the far field. For example, inserting (5.257) and (5.261) into

(5. 190) yields, for Hom and Eom modes respectively

+ t
E (r, 6) Yo 4 Ol e, o i q*‘.;:] x
] € om T i47(kcos6+a! )
4 1
o7 , 0<8<7/2
(l)ﬂcasine) inT cos-g-
X < (5.202)
Zwale(kasinG)sing
T — 7/2<6<7x
~ sin —sz

V 48 = (a-ZT+-2) .
where 8= \[2ka cos#, 8 m = VK ag ay = (ka- 4+8ka> ;
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FIG. 5-22: RADIATED POWER PER UNIT SOLID ANGLE FOR INCIDENT MODES
EACH CARRYING 1 WATT OF POWER (Wainstein, 1948¢c, 1950a).
(The solid curves for H, . mode are renormalized by using the fact that the Kirchhoff
approximation gives the exact value at 6], (113. 0°). Consequently their absolute
magnitude is rather uncertain.)
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aikr iak exp EJ(s, qE)+ U(som, qtﬂ

— X
Ea(" 9) ~ Eom r j _(kcosb+a )
om om

o 5 0<6<x/2
x 4 21rH° (kaslno)sinz
(5.203)
Bom )
Y akJo(knsinO)sin—z— cos 3 , r/2<0<7x

where s = \J2ka cos?, s°m= \/zl:-aom' Q@ = Qca+{‘—-§l1;> .
and the angle oom and e:)m are defined by (5.197). Wainstein (1948¢) reports that
for Hol and Eol modes and ka equal to that of Fig. 5-22 (higher than the cut-off
frequency by 6 percent and 5 percent respectively), the difference between the exact
power patterns and the approximate ones obtained from (5. 202) and (5. 203) does not
exceed 2-3 percent. This indicates that for practical purposes the condition ka >>1
is fulfilled as soon as the incident mode is above cut-off. For general Hnm and Enm‘
modes, somewhat more complicated approximate expressions are obtainable in the
same manner. As jnm >) z'nn >n, when n >1, those formulas should also be useful
as soon as the incident mode is above cut-off. As pointed out in Section 5.6, the
approximate expressions of Mn(a) and th) obtained by using the function U(s, g)
have a small jump at o =0, Consequently the approximate radiation patterns display
a small jump at 6=7/2, the amount of which is a measure of the accuracy of the
approximation.

When kasin® >> 1 is satisfied along with the condition ka >> 1, we can re-
place the Bessel and Hankel functions of (5.202) and (5.203) by their asymptotic
forms. Foran E_ mode with 0 <8 <7 /2, the result is
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6
-om .8 I ]
(6~ E 1T ak sin 5 COS, exp i(kr- kasin@+ 4)+U(som, ) Fe. 6
(: Ml om 2\(¥j  cosf-cos@ Vﬁ '
om om (5.204)

where

.0 = o ol 0]

The factor before the function F(r, 8) is the field of an incident plane wave propa-

gating in the direction eom scattered by a half-plane tangent to the tube. If we ex-
press the incident waveguide mode as a superposition of plane waves repeatedly re-
flected at the wall of the tube, the direction of propagation of these plane waves is al-
so given by eom' Thus the first factor of (5.204) can be interpreted as the geomet-
rical optics contribution to the far field. The factor

a " n -
T8ind expands' the cylin

drical half-plane waves into spherical waves as the distance from the edge increases.

When 7/2 <0 <7, substitution of the asymptotic form for Jo in (5.203)
yields the expressions of (5.204) plus an identical wave originating from the opposite
edge of the wall of the tube.

The function U(s,q,) tends to zero as ka—»m for every fixed 6 # /2. At
@ = n /2 it is discontinuous in such a manner that it compensates for the jump in the
geometrical optics approximation. This also means that the term U(som, qE) is
approximately zero for ka so large that the incident mode is not close to cut-off.

As in the scalar case the principle of reciprocity can be used to relate the
results of this section to those obtained in Section 5.4 for the scattering of a plane
electromagnetic wave. We assume that the plane wave is that of (5.133) (i.e., is
propagating in the direction (Oi, 0)) and write the field inside the tube due to this

wave as
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x Q0 v B
J @ ) ia' z
‘z ZZ( nmconn,h-Bnmsinnﬁ) -f—(?,-m—a—e
m=1 n nm
’ (5.205)
2,2 J @ By 14 2

n"nma nm
Z; (c mcosnﬁ'*Dmsinnﬁ) W e

B
[

To an Hmn mode incident from z =0 given by (5.166) we relate the radiated far field|

ikr

H e
E, ~ an(o)sinnp = )

E; ~ G (6) cos nf -e—i-k—r
g nm r

In the same manner the far field pertinent to an Enm mode (5. 165) is taken as

ikr

Ee ~ F (O)cosnﬂ-—r— .

E eikr
E¢ ~ Gnm(O) sinnf -

We then have
€ i2e j'
A_H_=(1°"-2 Lo 5 fm(w-ei)sinB
nm Mo Ka*a’ (j' -
4
€ 4j’
_ o+l "o nm H
Bannm = (D B 24 2 2 F m(w-Oi)cosB
okaea (' -n)
nm ‘nm

12¢ )2

_ o+l n_nm E
CnmEnm = (-1) —————2 2 (1r 6 )cosB
kaa
nm
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- —am  E o
D_E =1 GZ (7-6))sinp

(5.206)

where €= 1, €, =€=...= 2. It is readily checked that equations (5,206) conform
to equations (5.145), (5.146) and (5.190). From (5.206) the absorption cross section,
defined as the ratio of the power transmitted into the tube to the power incident per
unit arca, can be re.ated to the power patterns of the modes above cut-off. Thus,

1 i = = -
for jj, <ka<j , (]'11 1.841, j . 2.405) where only the H. . mode is above cut

11
off, we have

\2
0 6) = (; )[ (w-Gi,O)sinZB+f¥1(w-Ol,7r/2)c032[3] (5.207)

where A = 27 [k is the free-space wavelength. The absorption cross section for
ka =2 can consequently be constructed from Fig. 5-22.

6 The Wiener-Hopf Factorization
5.6.1 Explicit Expressions

The fundamental step in the Wiener-Hopf technique is to find the split func-
tions Ln(a) and Mn(o:) analytic in the upper half-plane and such that

(1)

Ln(a)Ln(-a) = 7iJ (ax)H (ax) (5.208 =5, 33)

M @M () = xiJ'(ax)H(l)'( ax)
n n

(5.209=5,34)
where k = |k _a® and where L (@) and M, () behave as O(1/ V@) a8 |u|— .
(See Wiener and Hopf, 1931; and Paley and Wiener, 1934.) These conditions deter-
mine the split functions completely except for a factor T 1 but all physical quantities
are independent of the choice of this sign. As we have defined L_n(a) = Ln(a),
M_n(a) M (a) and M (a) L (a) it is only necessary to determine Ln(a) for
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n 20 and Mn(a) for n »1. In the following we will give formulas only for Ln(a) in
those cases where the corresponding expression for Mn(a) is obtained by just re-
placing the Bessel functions by their derivstives.
An explicit expression for th¢ function log Ln(a) is obtained by applying
i) .
(5.8) to log ElJn(ax)xi“ (a:ci] . Thus,

Ln(a) ) m{-z_:r—i PS" IOEEi_J_n. @Jki.-zz:)nil) (a\lk - 'YJ d'y}
-

(5.210)

where the path of integration passes below the pole vy=a and where P designates
the Cauchy principal value as |'y |—) . Wainstein (1948¢c; 1949; 1950a, b) factorizes
the functions vrxJn(ax)HS)(ax) in which case the integral corresponding to (5.210)
exists in the ordinary sense. The split function, analytic in the upper half-plane, is
then instead m Ln(a). Multiplying both numerator and denominator of the
integrand of (5.210) by ¥+ a and observing that the logarithm is an even function of

¥ we get

ViZ- 2 ) ["2_"‘@'
L) = exp {za loiEiJn (a K Yz-i a)znn Q; K - dy}

i

N - (5.211)

where the path of integration is indicated in Fig. 5-23a for the case when a is real
and |a| <k. To determine the field quantities everywhere, it is sufficient to know
Ln(a) and Mn(a) for positive real values of a such that 0 <o < k and for all posltivew
imaginary values. th) and M () are continuous and different from zero at those
points,

The integrand in (5.211) is an even function of v and we can therefore inte-
grate only over the interval (0, ®). Change of the variable of integration to v defined
by v = a\Jk - 'y! for 0 € ¥y <k and v=a¢y -k for k <« ylelds
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L @) = \FJ (M)Hﬁ(u) x

[z+aro ian -1log ( |J (v)H( )(v)|J
aa
X exp - [
gu (v -ax)\lak -v

®
. ‘X v log [21n(v)Kn(v)]

o (a2x2+v2) ak +v

dv] (5.212)

Mn(a) = %N'(n&)ﬂ(l) (ak) x

Y (V) '
[ +arctan T J,( ) -ilog (IJ' (v)n( )(v)lj
X exp -42 p v +

(v -an) ak -v

© viog [-21' (VK! (v)]
+1i dv (5.213)

(a2x2+v )Va 'k +v

nt+l
where -7/2 <arctanf < /2 and In(v)=l'an(iz), Kn(v) ”2 S’(iz) are modi-

fied Bessel functions.
These expressions are valid if o is real and -k <a <k. However, Ln(a n.l)

and Mn(al':.l) take the form 0o for real a " and a;u respectively, where as before

Jn(jnm)=0 J;l(jl'lm)=o’ ijn°<jn1<.... 0=j' <jl'11<

= = J!
(we define joo j'10 0 although they are not zeros of J0 and J 1) and
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FIG. 5-23: PATHS OF INTEGRATION FOR THE SPLIT FUNCTIONS
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are real and positive real or imaginary. Equations (5.202) and (5.213) are also valid
for an arbitrary positive imaginary value of o if the square root factor is subatituted
by 1. In that case the use of principal value i8 no longer neces<ary. Ll(k) can also
be obtained from (5.212) by putting x = 0. Thus

Y (v)

ka §+arctan 3 ( y ilog( 'J (v)l{( )(V)D

Ll(k)=exp --l:f' [
o vJak -v

logr21 (V)K (v
+ 1 (5.214))
vaa k +v

A different expression for Ln(a) and Mn(a) is obtained if the contour of inte-
gration is deformed according to Fig. 5-23b. This scheme has been employed by
Wainstein (1948c; 1949; 1950a, b) and what follows is a generalization of his work.
We write

a . +ta 22p ()
n

L (@) = [|rid (ax)l-lu)(ax) 'I—[ o2 (5.215)

n a _ -a

\ m=1 nm
aa
' o a ta S (a)

Mn(a) = 1riJ'(ax)H(1) (ax) TT -——_—a 32 n (5.216*

m=l "am

where o, and mé are the smallest non-negative integers such that j (mo +1) >ka

1 ! - H
jn(moﬂ) >ka and jn(m6+1) >ka, jn(m{,ﬂ) >ka, If m 0, ie. in >ka or
j;n >ka, the product should be disregarded.
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If we combine the integrals along both sides of the branch cut in Fig. 5-23b,
observing that the small indention around y=k gives no contribution if @ #k, we get

"
P ) = (P)

2 T Yn(u)
- ;;(P) pod +arctan Jn(ax) -
o +a ﬁ
pam—— (5.217
nnm
The functions
Y (x) Y' (%)
= +arctan and I +arctan ——
2 Jn(x) 2 J '( )
are discontinuous and jump by 7 at the zeros of Jn(x) and J]'l(x) respectively. We
introduce instead the continuous functions
(1) Yn(X) T
== _+ = —
Qn(x) 2 argI-l (x) = arctan Jn(x) + 2 +mnr (5.218)
if Jnm <x <Jn(m+1)
@ ™ a
! =X, = -
Q (x) 2 argH (x) = arctan J;I(X) + 2 + m7 (5.219)

if j' <x<
1 Jn j!

n(m+1)
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Thus, we have
Qn(jnl) = Ir , £330 np0
Q;!(O) =7, Q&(j;ﬂ) =ir, 131, npl

Insertion of 2 _(x) into (5.217) gives a divergent integral which is compensated by a

similarly divergent series. By subtracting the divergent part from both the integral

and the series, the result can be written as

ka in(v) - axQn(ax)

_ 2
RePn(ar)—7r 22 32 2c:iv,
(ax—v)Vak-v

(5.220)

Q (ax)

ImP {(a) = - a 2 1+log—- <——arctan >
n aa : " 2 2 2
-m +1

® v [Qn(V) - ‘.'1 K a}
+ y(m +1) + —_————=—dv+ —arccos—
o (v2- 9‘2,‘2) " v?_ azkﬁ a k

(5.221)

for @ real, 0 <o <k. Here m_is zero or an integer such that jnm <ka <jn(m +1)

(4]
0
and w(m°+1)=1+%+315-+...+—nll—-7, (y= 0.577216...) is the logarithmic

derivative of the gamma function.
When o is positive imaginary, the expressions take the form

ka v (V) Q _(ax)

2 n
ReP (in) = = dv -
n T 0 (azkz- vz)ga k-v T

(5.222)
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Im Pn(in) =

for 0 <n <m. Here m iz zero or an integer such that jnm <ka< jn(m°+1)’ where

as before xa = a\jk2+n!
In the same manner, the expressions for Re Sn(a) and Im Sn(a) are obtained

- 1 ;! »

from (5.220) and (5. 223) by substitution of Qn(x) and Jim for Qn(x) and jnm respec

When a—> k the integral in (5.220) defining Re Po(a) and Re Sn(a), n>l1,
diverges, but this is compensated by a contribution from the indentation around
¥=k in Fig. 5.23b. Thus, we have
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2

2r K+ _
£ {E-hlogka - [Qn(ax)-axj log <20 + y(m_+1)

-8 k +9
S (g Ve 2N

2na

—m+1 ’jz -a k-1 »
Q0
. v@(v)-ﬂ-ax[nn(ax) ax] ae X log( )} (5.223)

2 2 2
ka (vi-a"k")yv -a'k

(o)

b

—9() 1 >
—— ) dv -
\Iak -V 2vlogv

ka

Q (v)
Jka - dv+-1-log 2103-1- ri¥op (k) (5.224+
T ; 2.9 2 2 b 2 o)
b VVa k-v

* Wainstein (1949) indicates that Q;l(x) should be defined as Q! (x) =arg H(l) (x) - g ,
which seems to be incorrect.
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. {where b<1 if ka 21 and b=ka if ka <1,

ka Pn(k} n3l (5.225)

1 - al'1m+k { ka - Qt'x(V) -7 i
M (k) = —— n exp - — e ——— dv+—EcaImS (k)+a
n ak m=1 a' -k T . v"azkz-vz 2 n

npl (5.226)

1]
As before, m or m, is an integer or zero such that jnm°< ka < jn(mo +1) and

! t
jnm . <ka< n(m,'.., +1) respectively, and the product should be put equal to 1 if

mo =0 or m(') =0,
5.6.2 Low Frequency Approximations
A low frequency expansion of Ln(a) and Mn(a) can be obtained from (5.220)

through (5. 226) by using the power series expansions of Jn and Yn or Jl'l and YI'l
respectively. Since Qo(v) behaves as

-7

2y+log )

when v—0, the expansion for Lo(a) contains a series of inverse powers of log(ka)
and consequently it can be expected to give accurate results only when logka >>1.

The expression for Lo(a) is
~ -1 -2
Lo(a) ] Lo(k) {I-A log(l1-§)+A -Z;(E)-

A3 lrE1 1-£) 2-34 rina (5.227%
B 3 logll-8)-\ JaTy <plwdu :
0

where
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A= -2logak-2y+ix , = Lz:;“. , v =0.577216...(Euler's constant)

x
Lz(x) = - l—oﬂt'l;tldt (the Dilogarithm)

Equations (5.227) and (5.229) are given by Hallen (1961) in connection with his treat-

ment of cylindrical antennas. We also give only the results for Ll(a) and Ml(a)
which are the ones most easily obtained,

2 2
ReP ) x =) kta la

- for a real, 0 <a <k
da k-o
(5.231)
2 2
ReP (in) = a(k—"-ﬂ-—larct.an-l‘-{--ké for 0<n<w
1 2n n 2
ReS, (a) = az(k'“z)""l kto  ka 1, 0<a<k
eSs, ~ oy . o 2 or a real, a

(5.232)

2,2 2
L a0sha ko Ia
Resl(in) ot 2am arctann+ > for 0 <n<om

2.2 2.2
~ a k ak 19
|L1(k)| ~ exp *{- 2 l:1+ 3 (y- 12 +logkﬂ} (5.233)
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(5.228)
0
and
2
L (k) = ' 1--1’-'2- A'2-2§(3)A'3> (5.229)|
0 o]
23) = Zl—ls = 1.2020569. .. (5.230)
n=l n
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M, w| = exp{"l - 9-—- (‘y+— +log kaﬂ} (5.234)

The expression for ILl(k)l is given by Levine and Schwinger (1948) and they report
that it gives values in excess of the correct value by less than 3 percent if ka <1.
5.6.3 High Frequeacy Approximations
A high frequency expansion of Im Pn(a) and Im Sn(a) is obtained by employing
instead the asymptotic series

Q (v) ~ ( > szl w-Dw-25 (- 1)59-114u+1o'u
2 4 24v) 6(4v)° 5(4v)

, (- 1)5u -1535g2+54703u 375733) ,
14(4v)

(5.235)

Q'(v) ~ v-( ) put3 uz+46u 63 g3+185u2 2053p+1899
274)"" 2w 6(4v)° 5(4v)°
V>
(5.236)

where u =4n2. Hence
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Qn(uc) 9
ImP (@) ~ - + = 1+log —arctan -1
" " - mem_ +1 \}
ka -» 00
x o '—2’—%)12 (u-l)arccos%
+w(m°+1)+-arccosi- ern + 3
@ @ 8aa &k

a a
arccos T arccos T
(- 1) - 25) kK 1 k
+ 384 - 2 +"'+A-l

aa(xa)3 (nazk) aa(na)‘

£1-3

"2
> w2 ] ¥ } (5.237)
755 (ka2 (ka)2 VD) | 3. 20 41)

for @ real, 0<a €k, where A_, is the coefficient of v? in(5.235).

EmPn(in) ~ 1+log—- -——1 LF_W—-— +«p(m°+1)-
ka—-bcn m=m +1 -a k ~-n
n 1) k-7
(—-- r (u-1)log
5103("?)— 2 4/ - k +} (5.238)
n na 8naZx

for a=in, n >0. The corresponding expressions fr Im Sn(a) are obtained by sub-
stitution of the coefficients of (5.235) against those of (5.236).

To obtain an approximate expression for Re P (a) and Re S (a) valid for larg1
values of ka, we deform the contour of integration in (5 211) according to Fig. 5-23c|
Apart from the integrals along A, and Aa' we get contributions from the pole at
+=ca and from the first quadrant of the large circle used to complete the contour.
The integral along A! is readily performed. It only contributes to the imaginary

3
parts of Pn(n) and Sn(a) and is essentially equal to the series term of (5.222) or
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(5.223). The real parts of Pn(a) and Sn(a) are given by

n Kn(u)
@ = -arctan
n 2 nl (u)
ReP (a) = -1-1'71)- 53 2 udu (5.239)
0 (u +ax)Jak +u
-K! (u)

57
00 —— - Aarctan
n 2 7I'(u)
Resn(a) = -1+-‘-—;-L L

udu (5.240)
0 (u2+ a2x2) aa k! +u§

where a is real and 0 <a <k.

Consider the formula

- -rilog {\/_ <4 B) (1)‘3)]_([3 . (5.241)

where B is real and positive and the line of integration lies below the branch cuts.

The quantities v, ,v,,.. .-y are the complex zeros of K (u) in the third quadrant,
1 72’ 1

n E (-1) _-] and they are dis-
tributed close to the curve indicated in Fig. 5-24 Equation (5.241) is a generaliza-

and we put Yo = 0, The number of zeros is M=

tion of a formula given by Jones (1955). By changing the sign of the variable of inte-
gration in the range (-, 0), and separating out the term containing the product over
M which can be easily integrated, we get
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-Na
®* Reu

a = tg-l = 0.66274,
where t is the positive root of cosht = t.

FIG. 5-24: LOCATION OF THE ZEROUS OF K (u) AND K!' (u) IN THE
THIRD QUADRANT.

00 eZuK ()
2“l 2 log nn du =
u +e ﬂn(u)-i(-l) Kn(u)

0
= -7ilog {\, ‘”(B) W—ﬁ—
m=1 B +-y

(5.242)

Taking the imaginary part of both sides, we have

w

K (u)

(_1)n+l 2“ 7 arctan In(u) du
o Y +8 " n

2 2 g |52+72 ]
-1 {g,gl:—"f@n(ﬁ)wn(ﬁ))] -2 E :log —2——“‘-—} (5.243)
m=0 B
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and in particular, by letting 8 —» m,

a0
n+1 K (u)

. n
-1) uarctan——ﬂn(u) du

0
By an identical procedure we obtain

(¢ s)
n+l u

u2+ 32

K!'(u)
P du
wln(u)

(-1)

arc tan

(0] 9
K! (u) 2
(_1)n+1 uarctan —-— du = -7 dn_- + Re 2
rI' (0 16 -
0 n m=0
where 7‘ are the complex zeros of K' (u) in the third quadrant and 7' = 0,
w202 -],
We have
K (u)
n _ -2u
arc tan “n(u) =0le ) a8 u—d>w
and the same is true for
-Kr'x(“)
arctan ”I;;(“)

by replacing (a k +u ) 1/2
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2
|B + !
=3 @»sl’f [(Jf(s)wf(@] 22 108_7111_

We therefore obtain an asymptotic expression as ka —» o from (5.239) and (5. 240)

(5.244)

(5. 245)1

5. 246;

(5.247)
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1
ak 233k3
and thus
2
1+—

2k T 8K
ReP @) ~ -1- J (ax)+Y (
°n 2ak [-: <a.x+ a.r.) -0|B+ l]

ka — @
9 M
1 4n -1 2 n
+ 3 3< 5 - Z- Re {‘Ym}> -(-1) fla) (5.248)
2a k m=0
4
Resn(a) ~ =] - ————— I:;ak (' (ax)+Y"' (:uc) TT -——Lz?:l -
ka —» o0 IB 1 l

M'
4n°-3 {ZD n
+ Re <7' + (-1)"-4) f(a) (5.249)
PR < 16 ;) m ( )
where Kk = sz-az and

K
logk_a 0<k <k (a real)

fla) = (5.250)

arctan k<k (x imaginary)

-

ala

The divergence of the integrals in (5.239) and (5.240) when o —k is compensated by
a contribution from the indentation around o =k of the path of integraticn, so that

on
T_i_) k+a { }
L (k) ~ - . -log— - (5.251)
° m=1 64a 2k2

ka —» @
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2
m n
£ 0] ~ }_ﬁk+aom oo [ 1, [a - 1 2]
n n k-aom 7 ~3'%8 -

e 2r
ka —» m=1

_S%Lnlog(Zka)‘*%ilozl'V F+—3 o2 Cm ZRG{ :D}

m=1
n2l (5.252)
-1 2]
k+a' J" n(n-1)! 2
A —bm ka 1
|M(k)|~ \[T_Tk_a, expL-2-41°B ™ +
ka — @
2 M
1" _z : 2 _1 <4n -3 2
+ 3 log(2ka)+2 logl'y;nl - =33 T Re 'yl'n .
m=1 4a 'k m=0
n>l (5.253)
where, as before, m or m' is an integer or zero such that ] <ka<j a(m +1) or
o
o, SkA<I Jones (1955) reports that (5.248) and (5. 282) for ReP (@)

(2 >?)) and L (kﬂ respectively yield values differing fromt he exact ones by less
than one percent when ka > 2,

Wainstein (1948c) has derived an asymptotic approximation to Lo(a) and
Ll(a) in terms of a universal function U(s,g). Bowman (1963c) shows that both
Ln(a) and Mn(a) can be represented asymptotically in terms of the same function for
all values of n. The function U(s, g) was introduced by Wainstein in connection with
the problem of diffraction by two parallel half-planes.

We start from the formula

® logEa,(kz_ 2 Jn@ Vi, ‘-".ZDHS)G ,,kz_;z']
' dy
v-a

(2. 254)|

log (\-ialk+e) L (a)) 2“
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where the path of integration passes below the pole y=a. We change the variable of
integration in (5,.254) by ¥ =ksinr and obtain

X log 1rakcos1'Jn(akcos'r)H:l1)(akcos71
log \[—ialk+ a) Ln(a)> =31 cos T opTE— dr
c (5.255)
The path C goes from 7= --12:'+ ijo toT= g— ico and below the point 7 = arc sin a.
If we introduce into (5.255) the asymptotic approximation
2iQ (x) 2
mxd_(OH () A E-e o ] Q+4—“22—1- . > (5. 256)
X—> @ 8x

where Qn(x) is given by (5.235), we can deform the contour C into a path of steepest
dascent Co' From (5.256) and (5.235) it follows that Co goes through a saddle point
at 7=0 at an angle -7/4 with the real axis. Thus, we may replace the exact inte-

gral in (5.255) by the usual steepest descent approximation and we can write
.
13 +Uls, qL)

Ln(a) ~ mm e (5.25T
ka > w®

if o is real and 9 <a <k or if @ is positive imaginary, where

2
(v )] t
1 2iq-"y dt
U(s,g) = 71 logll-e E— (5.258)}
~® 13
t-se
2a
ond where s =« W}—l? e Cak). We have
_ 1 2iq
U0+, q) = -2-log(1+e ). (5.259)
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By comparing the corresponding value of Ln(O) with the exact value

(1)

_ 1
L (0) = \/;riJn(ak)Hn (ak) , (5.260)

and indication of the error in (5.257) can be obtained.

In an analogous manner we have

a
1 i n +U(s, qM)

Mn(a) ~ m e (5.261)

ka— o

if ¢ is real and 0 <a <k or if a is positive imaginary where

. Ay = Q;l(ak) .

It should be noted that all approximate formulas for ka —» o given here are
obtained from the ordinary asymptotic expansion for the Bessel functions, i.e. the
order is kept fixed as the argument tends to infinity. This means that we have to
require ka >>n, when n 21 in order to apply the formulas. Consequently, a high
frequency approximation for scattering of a plane wave at nonaxial incidence cannot
be obtained because in that case functions of order 2 or 3 ka are needed to obtain
sufficient accuracy.

We have given formulas for Ln(a) and Mn(a) valid if o is real and 0 € o <k,
or if o is positive imaginary. As we have seen in the preceeding sections of this
chapter, the physical quantities of interest are given as inverse Fourier transforms
of functions involving Ln(a) and Mn(a). When z >0 we can deform the path of inte-
gration for the inverse Fourier transform (Fig. 5-1) into A, of Fig. 5-23b, and
when z <0, into a corresponding contour around a branch cut from -k to -im. As
L (@) and M (@) are regular in the upper half-plane they take the same values on
b::th sides ofnthe branch cut in Fig. 5-23b. When z <0 and the branch cut goes from

-k t» -im we get the values on the upper and right side of the branch cut o+ and on
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the left and lower side a - from
n.rnmm;”(ax)
L @+ = Tt (5.262)
717 (ax)HZNax)
I'n(at -) = - Ln(-a) (5.263)

where ax =~ a k2 - 02 . as before, is the branch that is positive when a =0. The
corresponding formulas for Mn(a +) and Mn(a-) are obtained by replacing the Bessel
functions by their derivatives.

5.6.4 Numerical Computations

Numerical computations of Ll(a:1 1)’ £=0,1...6 bhave been performed by
Matsui (1960) for 0 < ka £ 3 using (5.212) and (5.214). Jones (1955) reports numeri-
cal computations of Ll(au), -=0,1,2, for 0<ka <10 by Brooker and Turing.
They use a formula obtained by deforming the path of integration into /\3 of Fig.
5-23 (cf. equation 5.239}). The numerical values are shown in Table VII",

For ka <0.5, using a formula similar to (5.226), Hallen (1956) has computed

the end admittance of a tube-shaped antenna, which admittance is equal to the com-

plex conjugate of the quantity

- 2
| _1_
4 \’ H, [Lo(k)]

His results, converted into a graph of Lo(k), are shown in Fig. 5-25.

* Brooker, Turing and Matsui use the time factor em. Their split function is there-
fore the complex conjugate of Ll(ar).
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TABLE VIO .
Real and Imaginary Parts of Llhu)

. lm-{iﬁ}ki} ln:{;u(kz}
M 3 M J
.0 1. 0000 1.0000 .0000 . 0000
1 . 9957 0609
.2 9831 .1198
.35 . 97147 1501
.3 . 9633 1752
4 9375 .2259
5 . 8070 .9078 2716 2747
6 8730 .3117
1 8364 3464
75 .8180 3654
.8 7983 3757
.9 1595 . 4000
1.0 7205 .7206 .4196 .4235
1.1 .6818 4348
1.2 .6440 : . 4460
1.25 .6252 4541
1.3 . 6073 . 4536
1.4 5719 .4580
1.5 5382 .5375 .4585 .4634
1.6 . 5060 .4586
1.7 4757 .4554
1.75 4601 .4568
1.8 4471 .4504
1.9 .4204 4437
2.0 .3955 ,3942 .4356 .4391
2.1 .3724 4264
2.2 .3510 .4161
2.25 .3394 4139
2.3 .3313 . 4050
2.4 .3133 .3932
2.5 .2969 .2052 .3808 .3839
2.6 2820 .3680
2.7 2686 .3549
2.75 .2606 .3510
2.8 . 2566 .3414
2.9 2459 3276

*
Matsui (1960), Jones (1955) M = Matsui
J = Jones
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. Re {L, 0} m {1 @}
ka M J M J
3.0 .2366 .2348 .3136 .3163
3.28 .2173 . 2799
3.5 .2086 . 3405
3.75 .2145 .1888
4.0 . 3867 . 1903
4.25 . 2900 . 2208
4.5 .2790 .2381
4.75 . 2635 . 2493
5.0 .2439 . 2532
5.25 .2253 .2518
5.5 . 2078 . 3464
5.75 .1022 .2376
6.0 .1789 .2260
6.25 .1684 .2119
6.5 .1612 .1954
8.7 .1588 .1750
7.0 .170% .1388
7.25 .2068 . 1640
1.5 . 2054 .1801
1.75 .1982 .1901
8.0 .1884 . 1957
8.25% .1778 .1978
8.5 .1668 , 1870
8.7 . 1565 . 1937
9.0 . 1473 . 1882
9.25 . 1385 . 1808
9.5 .1334 L1M7
9.7 .1298 . 1604
10.0 .1305 , 1452
,2
alo-kndau- --% 231 is real and positive or positive imaginary.
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Table VI (cont'd
. Re '{3‘1"'11.;} m {'-1‘“119
N oM J M J
.0 .4533 .4533 . 0000 .0000
A .4587 .0000
.2 .4547 0002
.25 .4556 .0003
.3 4564 0005
.4 4588 0011
.5 .4618 .4618 .0022 0031
.8 .4653 .0036
K .4603 0055
75 4715 . 0066
.8 4737 0080
.9 .4785 .0111
1.0 . 4836 4836 .0148 0147
1.1 4890 .o1gs
1.2 4947 0245
1.25 .4976 0272
1.3 . 5006 0305
1.4 .5065 .0373
1.5 .5125 5124 .0451 0449
1.8 .5184 0539
1.7 .5243 0637
1.75 . .5270 0687
1.8 .5298 .0746
1.9 .5350 0866
2.0 5397 5395 .0899 .0996
2.1 .5436 1145
2.2 5467 .1304
2.25 . 5476 .1385
2.3. 5487 .1476
2.4 5494 1662
2.5 5483 .5480 .1862 .1858
2.6 .5453 .2075
2.7 .5398 2301
2.75 .5356 .2413
2.8 .5313 2537
2.9 .5193 2782
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Table VI (cont'd)
a Re {Ll('u)} Im {Lx(’u&
M J M J
3.0 . 5031 . 5038 . 3031 . 3026
3.25 . 4378 . 3834
3.5 . 3208 . 3982
3.7% .1101 . 3080
4.0 . 3440 .1148
4.25 .3761 . 2052
4.5 .3553 . 2531
4.75 . 3223 . 2768
5.0 .2880 . 2851
5.25 . 2562 . 2831
5.5 .2286 . 2742
5.75 . 2055 . 2608
6.0 .1870 . 2437
6.25 .1733 . 2244
6.5 .1644 . 2026
6.75 .1616 .1770
7.0 . 1749 .1328
7.25 . 2202 .1614
7.5 . 2194 .1809
7.75 L2111 , 1930
8.0 . 1997 .1998
8.25 .1872 . 2024
8.5 .1748 . 2015
B.75 .1631 1977
8.0 . 1527 .1915
9.25 . 1439 .1832
9.5 1372 .1730
9,75 .1332 , 1604
10.0 .1338 . 1437
T S
all ‘2 11 e o s
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Table VIII (cont'd)

e {Lte, )} to {1, 0}
ks M J M J
.0 3526 3594 0000 0000
1 3527 0000
.2 3532 0001
.28 3604 . 0001
.3 3539 0002
4 3549 0008
5 3562 3631 0009 0009
.8 3578 0015
K 3593 0023
.5 3671 0028
.8 3611 0033
.9 3631 0046
1.0 3652 3721 0060 0061
1.1 3674 .0078
1.2 3607 : 0098
1.25 3778 0120
1.3 2720 0121
1.4 3744 0146
1.5 3768 3837 0175 L0177
1.6 3791 0207
1.7 3815 0242
1.75 : 3894 0264
1.8 3837 0280
1.9 3859 0321
2.0 3879 3846 0366 .03M
2.1 3897 .0414
2.2 .3913 0466
2.28 3988 0500
2.3 3926 0521
2.4 3837 0579
2.5 3543 4008 0641 0849
2.6 3945 0708
2.7 3942 0772
2.75 . 4001 0819
2.8 3934 0844
2.9 .3919 0917
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Re {Ll‘“lzg
J

Tm {Lx“‘xz)}
J

M M
3.0 . 3896 . 3854 . 0991 .1004
3.25 . 3850 1196
3.5 .3657 L1376
3.75 .3275 . 1483
4.0 .3145 .0196
4.25 .3331 . 0884
4.5 . 3488 . 0802
4.75 .3628 . 0889
5.0 .3748 .1137
5.25 . 3837 1344
5.5 .3878 .1608
5.75 .3846 . 1929
6.0 .3705 .2294
6.25 .3399 .2676
6.5 . 2842 . 2997
6.75 .1886 . 3030
7.0 .0167 L1197
7.25 . 2805 ,1131
7.5 . 2921 .1750
7.75 .2750 . 2088
8.0 . 2507 . 2256
8.25 . 2258 .2313
8.5 .2020 . 2295
8.75 .1831 . 2225
9.0 .1666 .2119
$.25 .1536 .1987
8.5 .1443 .1832
9.75 .1391 . 1654
10.0 .1398 . 1426

where j12 = 7,01559, ..

261



THE UNIVERSITY OF MICHIGAN
7133-3-T

Table VIO (cont'd)
“ﬁ“'xa)} Im "1 13’} (R‘{Lx u)} "‘{Ll 14}
M

ka
.0 . 4988 . 0000 . 3640 . 0000
.1 . 2989 .0000 .3641 . 0000
.3 .2992 . 0000 . 2643 . 0000
.3 . 2998 . 0001 . 2648 . 0001
.4 . 3003 .0003 . 2649 . 0002
.9 . 3009 . 0005 . 8654 . 0004
.8 .3018 . 0009 . 2660 . 0006
.7 . 3027 .0013 . 2666 . 0009
.8 . 3038 .0019 . 2674 .0013
.9 . 3049 . 0026 . 2681 .0018
1.0 . 3061 . 0035 . 2689 .0023
1.1 .3074 . 0045 . 2698 . 0030
1.2 . 3087 . 0058 . 3707 . 0037
1.3 .3101 . 0069 .2716 . 0046
1.4 .3114 . 0083 . 2725 . 0056
1.% .3128 . 0089 . 8734 . 0066
1.6 .3142 0117 . 3743 . 0078
1.7 . 3155 .0136 .2752 . 0091
i.8 .3168 .0158 . 3761 .0104
1.9 .3181 .0180 . 2769 .0119
2.0 . 3193 .0205 2T .0135
2.1 . 3204 .0231 .2785 .0153
2.2 .3213 . 0258 . 2792 0171
2.3 . 3222 . 0288 .2798 .0190
2.4 . 3229 .0321 . 2803 .0211
2.5 . 3234 . 0354 . 2807 .0232
2.6 . 3237 . 0389 . 2809 . 0255
2.7 . 3238 . 0425 .2811 .0279
3.8 . 3236 . 0463 .2810 .0303
2.9 . 3230 . 0502 . 2807 .0329
3.0 . 32331 .0543 . 2803 . 0355

2_hs
2
a

where 1138 10.17347... a,,=
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Table VIII (cont'd)

-]

Ro{L e} m{Le)}  Re{L 0} =L, g}
M M M

M
.0 .2391 . 0000 . 2201 . 0000
1 .2391 . 0000 . 2202 . 0000
.2 .2393 . 0000 .2203 . 0000
.3 .2395 . 0001 .2204 . 0000
.4 .2398 . 0001 .2207 . 0001
.5 .2401 . 0003 . 2209 . 0002
.6 .2406 . 0004 .2213 . 0003
.1 .2410 . 0007 . 2216 . 0005
.8 . 2415 . 0009 .2220 .0007
.9 . 2421 .0013 .2225 .0010
1.0 . 2427 .0017 . 2229 .0013
1.1 .3433 .0022 .2234 .0017
1.2 . 2440 . 0027 .2239 .0021
1.8 . 2446 .0033 .2244 .0026
1.4 .2453 .0040 .2249 .0031
1.5 .2460 .0048 . 2254 .0037
1.6 .2466 .0057 . 2259 . 0043
1.7 .2473 . 0086 .2265 ! .0050
1.8 .2479 . 0076 .2270 ° .0058
1.9 . 2486 , 0086 2274 .0066
2.0 .2491 , 0098 .2279 . 0075
2.1 . 2497 .0110 .2283 . 0085
2.2 . 2502 .0124 .2287 . 0095
2.3 . 2506 .0137 .2201 .0105
2.4 .2510 .0152 .2294 .0116
2.5 .2513 .0168 .2206 .0128
2.6 .2516 .0184 .2298 .0141
2.7 .2517 .0201 .2299 .0154
2.8 . 2517 .0218 .2299 .0167
2.9 .2515 .0237 .2298 .0181
3.0 .3512 .0256 . 2206 .0196

p
X2 A3 where J_. = 16.47063 e = [x2. 08 where §,_ = 10. 61586
%5 "2 15" e Mg 2 16-
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EXPERIMENTAL DATA
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[ ]

This chapter contains the experimental data ior scattering by circular cylin-
ders. Most of the material is relevant to scattering by infinite cylinders, but some
resuits for finite cylinders are included. Scattering of a plane acoustic wave by an
infinite cylinder is presented in view of the direct correspondence to scattering of an
electromagnetic wave. The details of the measuring techniques will not be discussed
here, but appropriate reference are given in each case.

The infinite cylinder is considered first, foiivwed by the finite cylinders. Th«j

excitation is by a plane wave or point source. The notation used is given iu the fol-

lowing diagram:

Source

~r——

6.1 Scattering of Plane Waves by an Infinite Circular Cylinder

Using the parallel plate technique, Adey (1955) measured the amplitude and
phase of the diffracted electric field for perfectly conducting circular cylinders with
ka = 2, 3.4 and 5.97. The incident radiation was a plane wave propagating perpen-

dicular to the cylinder axis with the electric vector in the axial direction and wave-

length 3.28cm. Figures 6~1 through 6-3 are plots of the amplitudes and phases of
the back and forward scattered fields.
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Current distribution measurements on conducting cylinders for a plane wave if
incident perpendicular io the axis of the cylinder with the magnetic vector parallel
have been performed by Wetzel and Brick {1955). The image plane technique was
used, and the normalized amplitude and phase of the surface current, as functions of
the angle measured from the center of the illuminated side, are presented in Figs.
6-4 and 6-5. The cylinder was perfectly conducting with ka =12 (cf. Eq. 2.42).
Cook and Chrzanowski (1946) studied the absorption and scattering of a plane
sound wave by a simulated infinitely long circular cylinder whose axis was perpen-
dicular to the direction of incidence. Figure 6-6(a) shows the absorption cross sec-
tion for a Fiberglas cylinder of radius 2.88 in. over the frequency range 100-5000 Hz]
Figures 6-6(b) and (c) correspond to the cylinders having one and two layers respec-
tively of cattle felt of thickmess 7/8 in. wrapped around them. Theoretical curves
are given for comparison purposes.

Acoustic scattering by circular cylinders of infinite length immersed in a
Iwuid wedium has been treated by Faran (1951). He measured the amplitudes of
waves scattered by metal cylinders in water. Figures 6-7(a) and (b) show the scat-
tering amplitude patterns for brass and steel cylinders respectively with ka=1.7.
The direction of the incident plane wave is indicated by the arrow in each diagram.
Figures 6-8(a), (b) and 6-9(a) give the scattering patterns for brass, copper and stee
cylinders, respectively with ka =3.4 and Figs. 6-9(b), 6-10(a), (b) show the corre-
sponding quantities for ka = 5.0, ’

6.2 Scattering of a Point Source Field by an Infinite Circular Cylinder

Kodis (1350) used the image plane technique to measure the scattering of elec-
tromagnetic waves by conducting and dielectric cylinders. The electric field was
|directed along the cylinder axis and the source was a horn antenna opereting at

24GHz (A = 1.25¢cm). Figures 6-11 through 6-22 show the amplitude and phase of

he diffracted field for brass :ylinders with ka=3,1, 6.3 and 10 respectively. The
heoretical values for point source excitation are related to those for a line source

rallel to the axis,
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Wiles and McLay (1954) employed a technique similar to that of Kodis (1950)
to measure the diffracted electromagnetic field ainplitudes for brass cylinders of
infinite length. The incident cylindrical wave had a wavelength of 3.2 cm and electric
vector parallel to the cylinder axis. Figure 6-23 shows the relative intensity of the
axial component of total diffracted electric field for ka = 2,494, measured in the
range 5 <ky <25.

Bauer, Tamarkin and Lindsay (1948) used ultrasonic waves at 1145 kHz
(A = 1.3mm) to measure the scattering by steel cylinders in water. Relative pres-
sure distributions at different points at right angles to the direction of propagation,
for various distances of the obstacle and the receiver from the source are plotted in
Figs. 6-24 through 6-31, The models used were 1/4 and 1/2 in. steel rods and
5/8 in. polystyrene tubes.

6.3 Finite Cylinders

Measurements of scattered pressure for finite cylinders using acoustic waves
have been made by Wiener (1947). The wooden cylinders had length and diameter
equal, and the results were compared with theoretical values for an infinite cylinder.

The scattering of electromagnetic waves (A = 3,13 cm) by brass cylinders of
length-tc-width ratios 4.44, 8.89 and 13.32 has been determined by Giese and Sie-
denthopf(1962). The measurements were confined to the far fields as a function of
the scattering angle (angle between the radius vector to the point of observation and
the cylinder axis).

Meyer, Kuttruff and Severin (1459) used the Doppler method to measure the
electromagnetic back scattering cross sections of finite cylinders at a wavelength
of A=3.2cm. Figures 6-32 through 6-39 give plots of the differential cross section
as » function of the scattering angle 8. The maximum back scattering cross section
(in the plane 6 = 90°) is presented as a function of £/) in Fig, 6-40, and the corre-
sponding quantity for 6 = 0° or 180° is plotted in Fig. 6-41,
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6.4 Thin Cylinders

Figure 6-42 shows a set of measurements reported by Van Vleck, Bloch and
Hammermesh (1947) for a thin cylinder (¢ = 900a) at broadside incidence. The nor-
malized back scattering cross section is compared with theoretical values calculated
by Lindroth (1959%).

Figure 6-43 shows the results of measurements made by Liepa and Chang
(1965) on the back scattering cross section of a silver-plated stainless steel cylinder
1/16 in. in diameter. The frequency of the incident electromagnetic wave was main-
taired at 2,370GHz (corresponding to ka = 0.0394), and the length of the cylinder
was varied from 30in. to 1.5in. (Note that this curve is not directly comparable to
Fig. 6-42 because #/a is kept constant in the latter, whereas ka is constant in the
former. )

A similar set of data for a silver plated stainless steel cylinder with

ka = .0222 is given by King and Wu (1959) in Fig. 6-44. The values are compared
with data for a cylinder with ka = ,0202 (Liepa, 1964) and are in good agreement.
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FIG. 6-2: MEASURED ¢ - ) AND THEORETICAL (—) AMPLITUDE OF TOTAL
ELECTRIC FIELD IN THE BACKWARD DIRECTION (= #) FOR A
METALLIC CYLINDER WITH _131 PARALLEL TO THE AXIS (Adey,
1955).
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FIG. 6-3: MLASURED (- : -) AND THEORETICAL {—) RELATIVE PHASE OF
TOTAL ELECTRIC FIELD IN THE BACKWARD DIRECTION (§ = 7)
FOR A METALLIC CYLINDER WITH E! PARALLEL TO THE AXIS
(Adey, 1955).
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(b)

(a)

FOR PLANE WAVE INCIDENCE: (a) BRASS CYLINDER, ka = 1.7; (b) STEEL

FIG. 6-7: MEASURED (s ¢ s) AND THEORETICAL (—) SCATTERED PRESSURE AMPLITUDE
CYLINDER, ka = 1.7 (Faran, 1951).
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(b)

FIG. 6-8: MEASURED (* ¢ ¢) AND THEORETICAL (—) SCATTERED PRESSURE AMPLITUDE FOR

(a)

3.4 (Faran, 1951).

PLANE WAVE INCIDENCE: (a) BRASS CYLINDER, ka = 3.4; (b) COPPER CYLINDFR,

ka
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®) AND THEORETICAL (——) SCATTERED PRESSURE AMPLITUDE FOR

5.0 (Faran, 1951).

PLANE WAVE INCIDENCE: (a) STEEL CYLINDER, ka = 3.4; (b) BRASS CYLINDER,

FIG. 6-9: MEASURED (e
ka
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' BRASS CYLINDER
oy \ 2o, ~R
/colc. * \.

Relx. ive Intensity

FIG. 6-23: MEASURED (o o o, x xx) AND THEORETICAL (—) RELATIVE INTENSITY
OF THE TOTAL DIFFRACTED FIELD E_ FOR A BRASS CYLINDER,;
ka = 2.494 (L - left of the cylinder, R - Fight of the cylinder) (Wiles
and McLay, 1954),
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FIG. 6-24: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A
1/4 IN. STEEL ROD RITH ka = 14.4, xo= 12.7cm AND
x = 6,6 cm (Bauer et al, 1948).
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FIG. 6-26: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1/4 IN. STEEL

e

ROD WITH ka = 14.4, X, = 12.7cm AND x = 46,6 cm (Bauer et al, 1948),
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FIG. 6-28: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1/4 IN. STEEL
ROD WITH ka=14.4, x_=54.3 cm AND x= 10cm (Bauer et al, 1948),
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FIG. 6-29: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1/2 IN, STEEL
ROD WITH ka = 28,8, x°= 54.3cem AND x = 10cm (Bauer et al, 1948),
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FIG. 6-30: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1/4 IN. STEEL
ROD WITH ka = 14.4, X, = 54.3cm AND x = 40cm (Bauer et al, 1948).
297
—— e s o




[ ) [LPERATLINE - T

THE UNIVERSITY OF MICHIGAN

7133-3-T

1S -
i
.

8w}
5
k
(3]
>
g

. 8 st

0 i L 1 1 )
0 200 400 ky 600 800 1000

FIx. 6-31: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1 / 2 IN. STEEL
ROD WITH ka = 28.8, X, = 54.3cm AND x = 40cm (Bauer et al, 1948),
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FIG. 6-32;: BACK SCATTERING CROSS SECTION (IN db/cm ) FOR INCIDENCE AT
ANGLE 6 TO CYLINDER AXIS. UPPER HALF: o, (E1 PARALLEL TO
AXIS); LOWER HALF: g, (l!li PERPENDICULAR TO AXIS) 2=6cm,
A=3,2cm, ka =0,588 (Meyer et al, 1959).
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FIG. 6-33: BACK SCATTERING CROSS SECTION (IN db/ cmz) FOR INCIDENCE AT
ANGLE 6 TO CYLINDER AXIS UPPER HALF: ¢, (Ei PARALLEL TO
AXI1S); LOWER HALF: o (E PERPENDICULAR TO AXIS) £ =9cm,
A=3.2cm, ka = ,882 (Meyer et al, 1959).

300




FIG. 6-34:

THE UNIVERSITY OF MICHIGAN
7133-3-T

60

90

BACK SCATTERING CROSS SECTION (IN db/ cmz) FOR INCIDENCE AT
ANGLE 6 TO CYLINDER AXIS. UPPER HALF: ¢, (El PARALLEL TO
AXIS); LOWER HALF: 0, (_E_i PERPENDICULAR TO AXIS; £ = 14cm,
A =3.2cm, ka = 1,375 (Meyer et al, 1959),
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FIG. 6-35;: BACK SCATTERING CROSS SECTION (IN db/ cmZ) FOR INCIDENCE AT
ANGLE 6 TO CYLINDER S. UPPER HALF: a, (_E_i PARALLEL TO
AXIS); LOWER HALF: g (E® PERPENDICULAR TO AXIS); £ = 18cm,
A =3.2cm AND ka = 1,766 (Meyer et al, 1959).
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BACK SCATTERING CROSS SECTION (IN db/ cm2) FOIH INCIDENCE AT
ANGLE 6 TO CYLINDER S. UPPER HALF: ¢, (_E PARALLEL TO
AXIS; LOWER HALF: o, (g PERPENDICULAR TO AXIS); £ = 22cm,

A =3.2cm, ka = 2.16 (Meyer et al, 1959).
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FIG. 6§-37: BACK SCATTERING CROSS SECTION (IN db/ cmz) FOR INCIDENCE AT
ANGLE 6 TO CYLINDER AXIS. UPPER HALF: ¢, (_l;.‘.i PARALLEL TO
AXIS; LOWER HALF: g9, (_E‘._i PERPENDICULAR TO AXIS); { = 28cm,
A=3.2cm, ka = 2,74 (Meyer et al, 1959).
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FIG, 6-38: BACK SCATTERING CROSS SECTION (IN db/cm ) FOR INCIDENCE AT
ANGLE 6 TO CYLINDER AXIS UPPER HALF: ¢, (_ PARALLEL TO
AXIS); LOWER HALF: g, (_ PERPENDICULAR TO AXIS); £ = 32cm,
A =3.2cm, ka = 3,14 (Meyer et al, 1959).
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FIG. 6-39: BACK SCATTERING CROSS SECTION (IN db/ cm ) FOIi INCIDENCE AT
ANGLE ¢ TO CYLINDER AXIS. UPPER HALF: g, (E° PARALLEL TO
AXIS); LLOWER HALF: o, (_ PERPENDICULAR TO AXIS); £ = 40cm,
A=3.2cm, ka = 3,92 (Mey01 et al, 1959).
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MAXIMUM BACK SCATTERING CROSS SECTION (6 =90°) OF A CYLINDER
AS A FUNCTION OF LENGTH. MEASURED (¢ ¢ ¢) AND THEORETICAL
(—) 6, ; MEASURED (X x 3) AND THEORETICAL (- - =) g, (Meyer et al,
1959).
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FIG. 6-41: MEASURED (e ¢ o) AND PHYSICAL OPTICS (- - -) BACK SCATTERING
CROSS SECTION IN THE AXIAL DIRECTION (6= 0° or 180°) (Meyer
et al, 1959).
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FIG. 6-42: BACK SCATTERING CRCSS SECTION OF THIN WIRE AT BROADSIDE
INCIDENCE FOR {/a = 900; EXPERIMENTAL (¢ © ©) (Van Vleck et al,
1947); THEORETICAL (—) (Lindroth, 1955).

309

[ L er. e R e R A e - e e t-—~ o r————
- —-.!n. -
el




THE UNIVERSITY OF MICHIGAN
7133-3-T

2.4

[

1.6~

0'/)&2

0.4

FIG. 6-43: MEASURED BACK SCATTERING CROSS SECTION OF STAINLESS
STEEL CYLINDER AT BROADSIDE INC:JENCE; ka = 0.0395
(Liepa and Chang, 1965).
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FIG, 6-44: MEASURED BACK SCATTERING CROSS SECTION OF SILVER
PLATED STEEL CYLINDER AT BROADSIDE INCIDENCE;

o o oFOR ka = 0,022 (King and Wu, 1959); x xxFOR ka = 0.0202
(Liepa, 1964).
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